
Lukas Calefice[1]

[1] Universitat de Barcelona / ICCUB

Machine learning at the  
LHCb experiment

ML Workshop at ICCUB, 
24.10.2023

lukas.calefice@cern.ch



Lukas Calefice | XX.10.2023 | Machine learning in LHCbLukas Calefice | 24.10.2023 | Machine Learning Workshop

Large Hadron Collider beauty experiment (LHCb)
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• High-energy physics experiment at the LHC at CERN

• Precision measurements of  and  hadron decaysb c
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Large Hadron Collider beauty experiment (LHCb)
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• High-energy physics experiment at the LHC at CERN

• Precision measurements of  and  hadron decaysb c

CP violation / 
CKM angles

Hadron 
spectroscopy

Rare decays

Electroweak

Heavy ions/ 
fixed target

Exotica 
searches …

Semileptonic 
decays

Kaon physics
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Large Hadron Collider beauty experiment (LHCb)
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Particle Identification

T1-T3/
SciFiVELO

TT/UT

Magnet

Track reconstruction
&

Two reconstruction tasks:
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LHCb - data processing chain
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Two types of commonly used classifiers in LHCb
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Neural Networks: 
Multi Layer Perceptron (MLP)

Gradient Boosted 
Decision Trees (BDT)

HL

OL

IL

Usually we use supervised learning techniques from these software libraries: xgboost, scikit-learn, scikit-hep, TMVA

https://xgboost.readthedocs.io/en/stable/
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-hep.org
https://pos.sissa.it/050/040/pdf
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Event reconstruction - Tracking at LHCb

10

• Different track types need different tracking 
algorithms:

• Forward tracking 

• Seeding & Matching


• Tracking algorithms consist of three steps: 

• Pattern recognition


• Track fit 


• Removal of bad track candidates

• Performance indicators:


• Tracking efficiency

• Fake rate

→ χ2
trk x

z

Dipole magnet with   tracks are bent in -plane ⃗B ≈ By ⃗ey → xz
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Forward tracking
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• Reconstructed VELO tracks forwarded to the T stations looking for hits in search windows

• Clustering hits in reference plane, fitting & removing outliers, recovery loop

• Two MLPs: 

 Rejection of clusters with only 4 hits in recovery loop (2 HL, 9 IL nodes, 16,10 HL nodes) 
 Final track candidate selection before track fit is performed (3 HL, 16 IL nodes, 17,9,5 HL nodes)

→
→
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Track seeding & matching
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•VELO and T track segments from standalone tracking algorithms

•MLP with two hidden layers trained to match the right pairs

•Training variables: distances, track slopes, slope differences

•>80% rejection of fake pairs, retaining >97% of signal tracks 

T1-T3

T tra
ck

T1-T3

T track
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Fake track rejection  Ghost probability→

13

• MLP, the Ghost probability, introduced in Run 1 in 
the offline reconstruction 


• Adapted in Run 2 for the online reconstruction in 
HLT2 

 Fake reduction saves bandwidth

• One hidden layer with 26 nodes


• 21 training variables: track chi2, #Hits on track, , 
, detector occupancy, number of tracks 

competing for shared hits

→

pT
η

[LHCb-PUB-2017-011]

https://cds.cern.ch/record/2255039/files/LHCb-PUB-2017-011.pdf
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Particle Identification (PID)

14

Excellent PID performance essential for the majority of LHCb analyses!

 Background suppression for rare decay measurements such as 

 Classification between hadronic final states with same topology

 Bandwidth-friendly event selections in the software trigger 

→ B0
s → μ+μ−

→
→

2
C

an
d

id
at

es
 /

 2
5

 M
eV

/c

0

100

200

300

400

500

600
(a)
LHCb Data

Full fit
γ

*
 K→0

dB

Combinatorial

γ0,+π
*0

 K→
0,+

B
0π-π+ K→0B

 γ*Λ→
0

bΛ

X0π V→B
0π-π+ K→0

sB

γ*0 K→0
sB

)2) (MeV/cγπM(K
4500 5000 5500 6000

-5
0
5

2
C

an
d

id
at

es
 /

 2
5

 M
eV

/c

0

100

200

300

400

500

600
(a)
LHCb Data

Full fit
γ

*
 K→0

dB

Combinatorial

γ0,+π
*0

 K→
0,+

B
0π-π+ K→0B

 γ*Λ→
0

bΛ

X0π V→B
0π-π+ K→0

sB

γ*0 K→0
sB

)2) (MeV/cγπM(K
4500 5000 5500 6000

-5
0
5

0

500

1000

1500

2000

2500 LHCb
(a)

5.4 5.5 5.6 5.7 5.8

 )2
C

an
di

da
te

s 
/ (

 1
0 

M
eV

/c

]2 [GeV/cInvariant K+K- mass

-4
-2
0
2
4

Pu
ll

5.35.25.15

B0
s → K+K− B0 → K*γB0

s → μ+μ−

[JHEP 10 (2013) 183][Phys. Rev. D105 (2022) 012010] [Nucl. Phys. B867 (2013) 1]

https://arxiv.org/pdf/1308.1428.pdf
https://arxiv.org/pdf/2108.09283.pdf
https://arxiv.org/pdf/1209.0313.pdf
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Particle Identification (PID)
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Ring Imaging Cherenkov Detectors (RICH 1 & 2): 

• PID for charged hadrons ( ) over large -range
K, π, p p

*removed for LHCb Upgrade I

Calorimeter system (SPD/PS, ECAL, HCAL):


•  vs.  vs.  discrimination,  vs. 

• Measurement of energy and positions


•  used in hardware trigger

e± γ h± γ π0

ET

Muon system (M1, M2-M5):

• Muon PID for trigger and offline selections


•  used in hardware triggerpT

[LHCb-DP-2012-003]

https://arxiv.org/pdf/1211.6759.pdf
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ML for charged PID
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• Two main sets of variables for combined charged PID:


• Combined  log-likelihood:


• 


• 


• 

• Neural Network approach (ProbNNX):


• Separate three-layer MLP for each particle

• Different tunings for general purpose and dedicated 

analyses are provided

• Training variables from tracking + PID detectors


• Training data: simulated  and  hadron decays

Δ
ℒXπ = ℒRICH

Xπ ⋅ ℒCALO
Xπ ⋅ ℒMUON

Xπ

ℒRICH
Xπ = ln(ℒRICH

X ) − ln(ℒRICH
π )

X = {π, K, p, e, μ}

c b

https://arxiv.org/pdf/1803.00824.pdf

Σ+ → pμ+μ−

https://arxiv.org/pdf/1412.6352.pdf
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ML for neutral PID -   separationγ/π0
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• Unconverted  vs. merged 


• Very important for radiative decays and hadronic 
decays including a  in the final state


• Training variables based on calorimeter information


• Shower shapes, energy deposits, hit multiplicities


• Separate four-layer MLPs for the three ECAL 
granularity regions


• Simulated  as signal, 
 as background proxies

γ π0 → γγ

π0

B0 → K*0( → K+π−)γ
B0 → K+π−π0

[LHCb-PUB-2015-016]
[CERN-LHCb-DP-2020-001]

B0 → K*γ

B0 → K*γLHCb data

MLP>0.6

no MLP

98% signal efficiency, 45% background rejection

https://cds.cern.ch/record/2042173/files/LHCb-PUB-2015-016.pdf
https://cds.cern.ch/record/2729028/files/2008.11556.pdf
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MuonID in Run 3
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• In HLT1:  (+isMuon) 
- spatial residuals with respect to track  
extrapolation 
- multiple scattering 
- correlation between hits from muon stations


• In HLT2: More timing budget  
 More complex ML applications for muonID 

feasible


• CatBoost algorithm  
 Gradient Boosted Oblivious Trees 

- 23 training variables: spatial and temporal  
hit info + correlations


• Oblivious Trees: less expressive, but faster evaluation

χ2
corr

→

→

[CERN-LHCb-DP-2020-002]

https://cds.cern.ch/record/2727496/files/2008.01579.pdf
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Topological triggers in HLT1 and HLT2
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• Inclusive triggers based on topology of partially 
reconstructed -hadron decays


• HLT1 inclusive trigger selections:

• 1. Single displaced high-  track


• 2. Displaced vertex with high 

• HLT2 inclusive trigger selections:


• multi-track displaced vertices with high 

• Takes 40% of the total HLT2 bandwidth


• ML techniques:

• Run 1: Bonsai Boosted Decision Trees

• Run 2: MatrixNet by Yandex


• Data selected by the top trigger has been used for 
several hundred LHCb publications

b

pT

pT

pT

[JMLR: Workshop and Conference Proceedings 14 (2011) 63]

 collisionpp

Impact parameter (IP)

1.

2.

http://proceedings.mlr.press/v14/gulin11a/gulin11a.pdf
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Topological trigger in Run 3
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• Run 3: Monotonic Lipschitz Neural Networks 
• Robustness against detector effects 


 constraining the gradient of the response 
 function  by a Lipschitz constant 


• Monotonicity of efficiency in variables of 
interest ( )


 Adding linear term to response function 
for each variable of interest

→
f λ

i ∈ I
→

[arXiv:2306.09873]

|f(x) − f(x′ )| ≤ λ|x − x′ |

[arXiv:2112.00038]

Simplified model of the topological trigger with two inputs

g(x) = f(x) + λ∑
i∈I

xi

∂g
∂xi

=
∂g
∂xi

+ λ ≥ 0

https://arxiv.org/pdf/2306.09873.pdf
https://arxiv.org/pdf/2112.00038.pdf
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Offline data analysis
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Reweighting of simulationBackground rejection

Two main ML applications relevant for the majority of LHCb data analyses among many others

Before BDT cut After BDT cut

[R. Niet, PhD thesis]

• Essential for significant mass peaks / reduce systematic uncertainties

• Training data:


• Data from mass sidebands as background

• simulated signal events as signal


• Most commonly used model: BDTs, e.g. from xgboost

• Example:  from sin(2β) B0 → J/ψ( → e+e−)K0

S

https://xgboost.readthedocs.io/en/stable/
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• Known and unknown mis-modellings of kinematics, PID, 
multiplicities, … in simulation


• Multidimensional reweighting with BDTs


• Essential for signal BDT training & efficiency calculation

Offline data analysis

22

Simulation
Background subtracted data

Reweighted simulation

Λ0
b → pK−J/ψ

Reweighting of simulationBackground rejection

Two main ML applications relevant for the majority of LHCb data analyses among many others

• Essential for significant mass peaks / reduce systematic uncertainties

• Training data:


• Data from mass sidebands as background

• simulated signal events as signal


• Most commonly used model: BDTs, e.g. from xgboost

• Example:  from sin(2β) B0 → J/ψ( → e+e−)K0

S

[arXiv:1608.05806] 

Before BDT cut After BDT cut

[R. Niet, PhD thesis]

https://xgboost.readthedocs.io/en/stable/
https://arxiv.org/abs/1608.05806
https://eldorado.tu-dortmund.de/bitstream/2003/37132/1/Dissertation.pdf
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Current ML activities in UB LHCb group
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•Using BDT classifiers for background rejection 
in various data analyses of semileptonic or 
rare electroweak penguin decays


•Muon identification in Run 3


• Inclusive trigger for rare radiative decays 
 Developed for the Run 2 data taking 
 Adapted for Run 3 data taking 

→
→

 The entire UB LHCb group→

 Ricardo Vázquez Gómez→

 Aniol Lobo Salvia, Carla Marín Benito→
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Outlook - ML for bremsstrahlung recovery
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[Phys. Rev. Lett. 128, 191802]

• Electron vs. muon reconstruction:  
 Electrons emit bremsstrahlung when traversing detector material 
 Momentum will be biased if emitted bremsstrahlung photons are not identified


• Bremsstrahlung recovery algorithm in the LHCb reconstruction adding photons to the electron 
track based on compatibility of ECAL clusters with the track extrapolation


• Idea for ML: Check if photons are the correct bremsstrahlung photons or not

→
→

 Paloma Laguarta González, Carla Marín Benito, LC→

https://arxiv.org/pdf/2110.09501.pdf


Lukas Calefice | XX.10.2023 | Machine learning in LHCbLukas Calefice | 24.10.2023 | Machine Learning Workshop

Conclusions
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•LHCb has a variety of ML applications

• Insight given in this talk: 

•ML techniques in track reconstruction, 
particle identification

• Inclusive trigger selections and offline 
data analysis


•UB LHCb group has experience in 
various applications

•Current and future projects in offline data 
analysis and bremsstrahlung recovery

•data-quality monitoring

• jet reconstruction 

•flavour tagging

•calorimeter reconstruction

• fast simulations

•…

Many other applications in 
LHCb that I didn’t cover 
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Thanks for your attention!
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by Andrey Ustyuzhanin
https://github.com/jcjohnson/neural-style

“The wishful thinking of a LHCb physicist”

https://github.com/jcjohnson/neural-style

