Machine learning at the LHCb experiment

Lukas Calefice^[1]

[1] Universitat de Barcelona / ICCUB lukas.calefice@cern.ch

ML Workshop at ICCUB, 24.10.2023

European Research Council Supporting top researchers m anywhere in the world

Lukas Calefice | 24.10.2023 | Machine Learning Workshop

High-energy physics experiment at the LHC at CERN • Precision measurements of b and c hadron decays

2

CP violation / **CKM angles**

Rare decays

Hadron spectroscopy

Lukas Calefice | 24.10.2023 | Machine Learning Workshop

High-energy physics experiment at the LHC at CERN • Precision measurements of b and c hadron decays

3

CP violation / **CKM angles**

Rare decays

Hadron spectroscopy

Exotica searches

Lukas Calefice | 24.10.2023 | Machine Learning Workshop

Electroweak

Heavy ions/ fixed target

Semileptonic decays

Kaon physics

 High-energy physics experiment at the LHC at CERN • Precision measurements of b and c hadron decays

(
С	
S	

Two reconstruction tasks:

Track reconstruction & **Particle Identification**

LHCb - data processing chain

LHCb - data processing chain

LHCb - data processing chain

Two types of commonly used classifiers in LHCb

Gradient Boosted Decision Trees (BDT)

Usually we use supervised learning techniques from these software libraries: xgboost, scikit-learn, scikit-hep, TMVA

Event reconstruction - Tracking at LHCb

- Different track types need different tracking algorithms:
 - Forward tracking
 - Seeding & Matching
- Tracking algorithms consist of three steps:
 - Pattern recognition
 - Track fit $\rightarrow \chi^2_{trk}$
 - Removal of bad track candidates

- Performance indicators:
 - Tracking efficiency
 - Fake rate

Lukas Calefice 24.10.2023 Machine Learning Workshop

Dipole magnet with $\overrightarrow{B} \approx B_v \overrightarrow{e}_v \rightarrow$ tracks are bent in *xz*-plane

Ttrack

10

Forward tracking

- Reconstructed VELO tracks forwarded to the T stations looking for hits in search windows
- Clustering hits in reference plane, fitting & removing outliers, recovery loop
- Two MLPs:

Lukas Calefice | 24.10.2023 | Machine Learning Workshop

 \rightarrow Rejection of clusters with only 4 hits in recovery loop (2 HL, 9 IL nodes, 16,10 HL nodes) \rightarrow Final track candidate selection before track fit is performed (3 HL, 16 IL nodes, 17,9,5 HL nodes)

Track seeding & matching

- VELO and T track segments from standalone tracking algorithms
- MLP with two hidden layers trained to match the right pairs
- Training variables: distances, track slopes, slope differences
- >80% rejection of fake pairs, retaining >97% of signal tracks

Lukas Calefice | 24.10.2023 | Machine Learning Workshop

12

Fake track rejection \rightarrow Ghost probability

- MLP, the Ghost probability, introduced in Run 1 in the offline reconstruction
- Adapted in Run 2 for the online reconstruction in HLT2
 - \rightarrow Fake reduction saves bandwidth
- One hidden layer with 26 nodes
- 21 training variables: track chi2, #Hits on track, $p_{\rm T}$, η , detector occupancy, number of tracks competing for shared hits

Excellent PID performance essential for the majority of LHCb analyses!

- ightarrow Background suppression for rare decay measurements such as $B_{
 m c}^0
 ightarrow \mu^+ \mu^-$
- \rightarrow Classification between hadronic final states with same topology
- \rightarrow Bandwidth-friendly event selections in the software trigger

Particle Identification (PID)

Calorimeter system (SPD/PS, ECAL, HCAL):

- e^{\pm} vs. γ vs. h^{\pm} discrimination, γ vs. π^{0}
- Measurement of energy and positions
- $E_{\rm T}$ used in hardware trigger

Lukas Calefice | 24.10.2023 | Machine Learning Workshop

Ring Imaging Cherenkov Detectors (RICH 1 & 2):

• PID for charged hadrons (K, π, p) over large p-range

Muon system (M1, M2-M5):

- Muon PID for trigger and offline selections
- $p_{\rm T}$ used in hardware trigger

15

ML for charged PID

- Two main sets of variables for combined charged PID:
 - Combined Δ log-likelihood:
 - $\mathscr{L}_{X\pi} = \mathscr{L}_{X\pi}^{\text{RICH}} \cdot \mathscr{L}_{X\pi}^{\text{CALO}} \cdot \mathscr{L}_{X\pi}^{\text{MUON}}$
 - $\mathscr{L}_{X_{\pi}}^{\text{RICH}} = \ln(\mathscr{L}_{X}^{\text{RICH}}) \ln(\mathscr{L}_{\pi}^{\text{RICH}})$
 - $X = \{\pi, K, p, e, \mu\}$
 - Neural Network approach (ProbNNX):
 - Separate three-layer MLP for each particle
 - Different tunings for general purpose and dedicate analyses are provided
 - Training variables from tracking + PID detectors
 - Training data: simulated c and b hadron decays

Lukas Calefice 24.10.2023 Machine Learning Workshop

https://arxiv.org/pdf/1803.00824.pdf https://arxiv.org/pdf/1412.6352.pdf

ML for neutral PID - γ/π^0 separation [CERN-LHCb-DUB-2015-016] [CERN-LHCb-DP-2020-001]

- Unconverted γ vs. merged $\pi^0 \rightarrow \gamma\gamma$
- Very important for radiative decays and hadronic decays including a π^0 in the final state
- Training variables based on calorimeter information
 - Shower shapes, energy deposits, hit multiplicities
- Separate four-layer MLPs for the three ECAL granularity regions
- Simulated $B^0 \to K^{*0} (\to K^+ \pi^-) \gamma$ as signal, $B^0 \to K^+ \pi^- \pi^0$ as background proxies

MuonID in Run 3

- In HLT1: χ^2_{corr} (+isMuon)
 - spatial residuals with respect to track extrapolation
 - multiple scattering
 - correlation between hits from muon stations
- In HLT2: More timing budget \rightarrow More complex ML applications for muonID feasible
- CatBoost algorithm
 - → Gradient Boosted **Oblivious Trees**
 - 23 training variables: spatial and temporal hit info + correlations
- Oblivious Trees: less expressive, but faster evaluation

Lukas Calefice | 24.10.2023 | Machine Learning Workshop

[CERN-LHCb-DP-2020-002]

Oblivious Trees

Topological triggers in HLT1 and HLT2

- Inclusive triggers based on topology of partially reconstructed b-hadron decays
- HLT1 inclusive trigger selections:
 - 1. Single displaced high- $p_{\rm T}$ track
 - 2. Displaced vertex with high $p_{\rm T}$
- HLT2 inclusive trigger selections:
 - multi-track displaced vertices with high $p_{\rm T}$
 - Takes 40% of the total HLT2 bandwidth
- ML techniques:
 - Run 1: Bonsai Boosted Decision Trees
 - Run 2: MatrixNet by Yandex [JMLR: Workshop and Conference Proceedings 14 (2011) 63]
- Data selected by the top trigger has been used for several hundred LHCb publications

Topological trigger in Run 3

- Run 3: Monotonic Lipschitz Neural Networks
- Robustness against detector effects
 - \rightarrow constraining the gradient of the response function f by a **Lipschitz constant** λ

$$|f(x) - f(x')| \le \lambda |x - x'|$$

 Monotonicity of efficiency in variables of interest ($i \in I$)

 \rightarrow Adding linear term to response function for each variable of interest

$$g(x) = f(x) + \lambda \sum_{i \in I} x_i$$
$$\frac{\partial g}{\partial x_i} = \frac{\partial g}{\partial x_i} + \lambda \ge 0$$

Lukas Calefice 24.10.2023 Machine Learning Workshop

[arXiv:2112.00038] [arXiv:2306.09873]

Simplified model of the topological trigger with two inputs

Offline data analysis

Two main ML applications relevant for the majority of LHCb data analyses among many others Reweighting of simulation

- Essential for significant mass peaks / reduce systematic uncertainties
- Training data:
 - Data from mass sidebands as background
 - simulated signal events as signal
- Most commonly used model: BDTs, e.g. from <u>xqboost</u>
- Example: $\sin(2\beta)$ from $B^0 \to J/\psi (\to e^+e^-)K_S^0$

Offline data analysis

Two main ML applications relevant for the majority of LHCb data analyses among many others

- Essential for significant mass peaks / reduce systematic uncertainties
- Training data:
 - Data from mass sidebands as background
 - simulated signal events as signal
- Most commonly used model: BDTs, e.g. from <u>xgboost</u>
- Example: $\sin(2\beta)$ from $B^0 \to J/\psi (\to e^+e^-)K_S^0$

Lukas Calefice | 24.10.2023 | Machine Learning Workshop

Reweighting of simulation

- Known and unknown mis-modellings of kinematics, PID, multiplicities, ... in simulation
- Multidimensional reweighting with BDTs [arXiv:1608.05806]
- Essential for signal BDT training & efficiency calculation

Current ML activities in UB LHCb group

- Using BDT classifiers for background rejection in various data analyses of semileptonic or rare electroweak penguin decays
 - \rightarrow The entire UB LHCb group
- Muon identification in Run 3 → Ricardo Vázquez Gómez
- Inclusive trigger for rare radiative decays \rightarrow Developed for the Run 2 data taking \rightarrow Adapted for Run 3 data taking \rightarrow Aniol Lobo Salvia, Carla Marín Benito

Outlook - ML for bremsstrahlung recovery

- Electron vs. muon reconstruction:
 - \rightarrow Electrons emit bremsstrahlung when traversing detector material \rightarrow Momentum will be biased if emitted bremsstrahlung photons are not identified
- Bremsstrahlung recovery algorithm in the LHCb reconstruction adding photons to the electron track based on compatibility of ECAL clusters with the track extrapolation Take photons withir
- Idea for ML: Check if photons are the correct bremsstrahlung photons or not → Paloma Laguarta González, Carla Marín Benito, LC

Conclusions

- LHCb has a variety of ML applications
- Insight given in this talk:
 - ML techniques in track reconstruction, particle identification
 - Inclusive trigger selections and offline data analysis
- UB LHCb group has experience in various applications
- Current and future projects in offline data analysis and bremsstrahlung recovery

Lukas Calefice 24.10.2023 Machine Learning Workshop

Many other applications in LHCb that I didn't cover

- data-quality monitoring
- jet reconstruction
- flavour tagging
- calorimeter reconstruction
- fast simulations

Thanks for your attention!

"The wishful thinking of a LHCb physicist"

Lukas Calefice | 24.10.2023 | Machine Learning Workshop

by Andrey Ustyuzhanin https://github.com/jcjohnson/neural-style

