

Precise abundances of Mg and neutron-capture elements in the Milky Way:

chemodynamical relations using Gaia data and chemical evolution models

 $\mathrm{ESA}/\mathrm{Gaia}/\mathrm{DPAC}\text{-}\mathrm{CU8},$ Recio-Blanco and the GSP-Spec team

Pablo Santos-Peral

Alejandra Recio-Blanco (OCA), Georges Kordopatis (OCA), Pedro Alonso-Palicio (OCA), Emma Fernández-Alvar (IAC), Marco Palla (U. Trieste/U. Ghent), Patrick de Laverny (OCA)

Introduction

Data & Methodology

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample

Results

I. [Mg/Fe] in the Galactic disc

 $Precise \ [Mg/Fe] \ vs \ [Fe/H] \ \ (Santos-Peral \ et \ al. \ 2020)$

Introduction

Data & Methodology

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample

Gaia DR2+EDR3+DR3: photometry, astrometry and distances \rightarrow Stellar ages and orbital properties

Results

- I. [Mg/Fe] in the Galactic disc
 - Precise [Mg/Fe] vs [Fe/H] (Santos-Peral et al. 2020)

Chemical structure of the Galactic disc \rightarrow formation and evolution

Chemodynamical trends: age-abundance relations, radial gradients

(Santos-Peral et al. 2021)

Introduction

Data & Methodology

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample

Gaia DR2+EDR3+DR3: photometry, astrometry and distances \rightarrow Stellar ages and orbital properties

Results

- I. [Mg/Fe] in the Galactic disc
 - Precise [Mg/Fe] vs [Fe/H] (Santos-Peral et al. 2020)

Chemical structure of the Galactic disc \rightarrow formation and evolution

Chemodynamical trends: age-abundance relations, radial gradients

(Santos-Peral et al. 2021)

Comparison with Chemical Evolution Models (Palla et al. 2022)

Introduction

Data & Methodology

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample

Gaia DR2+EDR3+DR3: photometry, astrometry and distances \rightarrow Stellar ages and orbital properties

Results

I. [Mg/Fe] in the Galactic disc

Precise [Mg/Fe] vs [Fe/H] (Santos-Peral et al. 2020)

Chemical structure of the Galactic disc \rightarrow formation and evolution

Chemodynamical trends: age-abundance relations, radial gradients

(Santos-Peral et al. 2021)

Comparison with Chemical Evolution Models (Palla et al. 2022)

II. [Eu/Fe] & [Sr/Fe] in Milky Way disc and halo

Heavy elements Eu/Sr as signatures of accreted populations (Santos-Peral et al., will be submitted soon) Conclusions

Introduction:	Galactic Archaeology of the Milky Way			
Galactic Archaeology	history of the Milky Way analyzing fossil signatures			
I. Chemical abundances	II. Dynamics (orbits)	III. Kinematics (velocities)	IV. Ages	

Introduction:	Galactic Archaeology of the Milky Way			
Galactic Archaeology	history of th	e Milky Way analyzing fossil sią	gnatures	
I. Chemical abundances	II. Dynamics (orbits)	III. Kinematics (velocities)	IV. Ages	

Temporal evolution of chemodynamical correlations:

 \rightarrow constraints on the physical processes of the Galactic formation

Introduction:	Galactic Archaeology of the Milky Way			
Galactic Archaeology	history of the Milky Way analyzing fossil signatures			
I. Chemical abundances	II. Dynamics (orbits)	III. Kinematics (velocities)	IV. Ages	

Temporal evolution of chemodynamical correlations:

 \rightarrow constraints on the physical processes of the Galactic formation

<u>-External:</u> interaction with satellites, gas/stellar accretion, mergers... <u>-Internal:</u> radial migration (gas + stars), SN feedback...

3 / 24

Introduction:

 α - elements (O, Mg, Si, S, Ca, Ti), relative to iron ([α /Fe]), to trace the chemical evolution of the disc:

- $\begin{array}{ccc} & \text{Type II SN} \rightarrow \alpha \text{elements} \\ & (\text{collapse of massive stars} short timescale}) \end{array}$
- Type Ia SN \rightarrow Fe-peak elements (collapse of white dwarfs – *long timescale*)

 $[\alpha/Fe] \approx [Mg/Fe]$

Introduction:

 α – elements (O, Mg, Si, S, Ca, Ti), relative to iron ([α /Fe]), to trace the chemical evolution of the disc:

Introduction:

- Galactic disc formation: two different epochs of star formation?

5 / 24

0.00

-0.05 -0.8 -0.6

0.00

-0.05

0

6 8

τ[Gyr]

- <u>Galactic disc formation</u>: two different epochs of star formation?

-0.8

-1.0

Ò

0.2

0.4

-0.2 0.0

[Fe/H] [dex]

-0.4

dilution of metal-poor gas in the outskirts?

10 12 14 16

8

τ[Gyr]

10

12

14

16

- <u>Galactic disc formation</u>: two different epochs of star formation?

dilution of metal-poor gas in the outskirts?

major accretion event by a massive satellite (e.g. Gaia-Enceladus)?

(~10 Gyr ago) 0.8 2IM 0.6 0.4 [Mg/Fe] 0.2 0 Grisoni + 2017 -0.2 -0.5 -1.5 -1 0 0.5 [Fe/H]

5 / 24

Introduction

Data & Methodology

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample

Gaia DR2+EDR3+DR3: photometry, astrometry and distances \rightarrow Stellar ages and orbital properties

Results

I. [Mg/Fe] in the Galactic disc

Precise [Mg/Fe] vs [Fe/H] (Santos-Peral et al. 2020)

Chemical structure of the Galactic disc \rightarrow formation and evolution

Chemodynamical trends: age-abundance relations, radial gradients

(Santos-Peral et al. 2021)

Comparison with Chemical Evolution Models (Palla et al. 2022)

II. [Eu/Fe] & [Sr/Fe] in Milky Way disc and halo

Heavy elements Eu/Sr as signatures of accreted populations (Santos-Peral et al., will be submitted soon)

Conclusions

Data & Methodology: I. [Mg/Fe] in the Galactic disc

1. Stellar spectroscopic sample:

• AMBRE Project (*Teff, log g, [M/H], [alpha/Fe], Vrad*) (de Laverny et al. 2013; De Pascale et al. 2014)

- HARPS ESO spectrograph (R ~ 115000)
- Solar neighbourhood stars

- [Mg/Fe] abundances: \rightarrow Santos-Peral et al. 2020

Automatic spectral synthesis code GAUGUIN (Bijaoui et al. 2012; Guiglion et al. 2016) Developed for RVS \rightarrow <u>Gaia DR3</u> (Gaia Radial Velocity Spectrograph)

Optimisation of the spectral normalisation procedure for each stellar type and spectral line

 Mg I (Å):
 5167.3
 5172.7
 5183.6
 5528.4
 4730.04
 5711.09
 6318.7
 6319.24
 6319.49

 Strong saturated lines
 Non-saturated lines

Data & Methodology: I. [Mg/Fe] in the Galactic disc

1. Stellar spectroscopic sample:

• AMBRE Project (*Teff*, log g, [M/H], [alpha/Fe], Vrad) (de Laverny et al. 2013; De Pascale et al. 2014)

- HARPS ESO spectrograph (R ~ 115000)
- Solar neighbourhood stars

- [Mg/Fe] abundances: \rightarrow Santos-Peral et al. 2020

Automatic spectral synthesis code GAUGUIN (Bijaoui et al. 2012; Guiglion et al. 2016) Developed for RVS \rightarrow <u>Gaia DR3</u> (Gaia Radial Velocity Spectrograph)

Optimisation of the spectral normalisation procedure for each stellar type and spectral line

 Mg I (Å):
 5167.3
 5172.7
 5183.6
 5528.4
 4730.04
 5711.09
 6318.7
 6319.24
 6319.49

 Strong saturated lines
 Non-saturated lines

2. Gaia DR2: photometry, astrometry and distances

Cross-math with AMBRE:HARPS catalogue by Emma Fernández-Alvar

- Ages

Isochrone fitting method developed by Georges Kordopatis

- Kinematic and orbital properties (ecc, $z_{max}^{}, R_{apo}^{}, R_{per}^{}, R_{g}^{})$

Integration of the orbits by Emma Fernández-Alvar

→ <u>Santos-Peral et al. 2021</u>

Introduction

Data & Methodology

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample

Gaia DR2+EDR3+DR3: photometry, astrometry and distances → Stellar ages and orbital properties

Results

I. [Mg/Fe] in the Galactic disc

$Precise \ [Mg/Fe] \ vs \ [Fe/H] \quad (Santos-Peral \ et \ al. \ 2020)$

Chemical structure of the Galactic disc \rightarrow formation and evolution Chemodynamical trends: age-abundance relations, radial gradients (S

(Santos-Peral et al. 2021)

Comparison with Chemical Evolution Models (Palla et al. 2022)

II. [Eu/Fe] & [Sr/Fe] in Milky Way disc and halo

Heavy elements Eu/Sr as signatures of accreted populations (Santos-Peral et al., will be submitted soon)

Conclusions

Introduction

Data & Methodology

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample

Gaia DR2+EDR3+DR3: photometry, astrometry and distances → Stellar ages and orbital properties

Results

I. [Mg/Fe] in the Galactic disc

Precise [Mg/Fe] vs [Fe/H] (Santos-Peral et al. 2020)

Chemical structure of the Galactic disc \rightarrow formation and evolution Chemodynamical trends: age-abundance relations, radial gradients (Santos-Peral et al. 2021)

Comparison with Chemical Evolution Models (Palla et al. 2022)

II. [Eu/Fe] & [Sr/Fe] in Milky Way disc and halo

Heavy elements Eu/Sr as signatures of accreted populations (Santos-Peral et al., will be submitted soon)

Conclusions

Results (I):

<u>Santos-Peral et al. 2021</u> \rightarrow chemodynamical analysis of Galactic disc evolution

- Sample identical to Hayden+2017 (<u>494 MSTO stars</u>, Gaia DR1 + Mikolaitis+2017 [Mg/Fe] abundances)
- Local Galactic disc: d < 300 pc; |z| < 1 kpc
- Stars $\tau \geq 12 \ \text{Gyr} \ \rightarrow \ \text{old} \ (\text{thick} \ ; \ \text{high-[Mg/Fe]}) \ \text{disc population}$

Stars $\tau \ge 12$ Gyr (high-[Mg/Fe] sequence), rapid chemical enrichment reaching ~ solar abundances

9 / 24

Slower and continuous chemical evolution in the last 10 Gyr

11 / 24

Results (I):

Observational analysis :

- I. <u>Old high-[Mg/Fe] population</u> (formed earlier and faster) pre-enriched the ISM
- II. <u>Chemical discontinuity (~ 10 Gyr ago):</u>
 - Arrival of **pristine gas (infall/gas rich merger**)
 - \rightarrow formation of the second [Mg/Fe] sequence on longer timescales

Results (I):

Observational analysis :

- I. <u>Old high-[Mg/Fe] population</u> (formed earlier and faster) pre-enriched the ISM
- II. <u>Chemical discontinuity (~ 10 Gyr ago):</u>
 - Arrival of **pristine gas (infall/gas rich merger**)
 - \rightarrow formation of the second [Mg/Fe] sequence on longer timescales

Overlap in time (~ 10 Gyr) and chemical similarities

between the Gaia-Enceladus more metal-rich tail and the outer metal-poor low-[Mg/Fe] disc

Results (I): Comparison with Chemical Evolution Models

<u>Palla et al. 2022</u> \rightarrow chemical evolution scenarios directly compared to [Mg/Fe] abundances

- Delayed two-infall and parallel models, including radial migration prescriptions
- Comparison with the whole analysed AMBRE:HARPS sample (1066 stars)

Results (I): Comparison with Chemical Evolution Models

<u>Palla et al. 2022</u> \rightarrow chemical evolution scenarios directly compared to [Mg/Fe] abundances

- Both delayed two-infall and parallel scenarios reproduce the bulk of the data

- Both delayed two-infall and parallel scenarios reproduce the bulk of the data

- Problems in explaining the most metal-poor of the low- α sequence...

- Both delayed two-infall and parallel scenarios reproduce the bulk of the data

- Problems in explaining the most metal-poor of the low- α sequence... and

and the metal-rich tail

- Both delayed two-infall and parallel scenarios reproduce the bulk of the data

- Problems in explaining the most metal-poor of the low- α sequence... and the metal-rich tail
- Explained in light of radial migration from outer and inner disc regions, respectively

14 / 24

Results (I): Comparison with Chemical Evolution Models

<u>Palla et al. 2022</u> \rightarrow chemical evolution scenarios directly compared to [Mg/Fe] abundances

- Delayed two-infall & one-infall for outer

and inner disc chemical tracks

- Low-α metal-poor stars: two-infall model for outer radii with larger proportion of pristine gas, reaching lower metallicities. One-infall model for outer radii reproduces the tail distribution

and inner disc chemical tracks

- <u>Low-α metal-poor stars</u>: two-infall model for outer radii with larger proportion of pristine gas, reaching lower metallicities. One-infall model for outer radii reproduces the tail distribution

- <u>Low- α super-metal-rich stars</u>: two-infall model for inner radii, with enrichment in the second gas accretion episode. Without pre-enrichment or one-infall model, predict low [α /Fe] for a given metallicity. **15** / **24**

- Delayed two-infall & one-infall for outer

and inner disc chemical tracks

Introduction

Data & Methodology

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample

Gaia DR2+EDR3+DR3: photometry, astrometry and distances \rightarrow Stellar ages and orbital properties

Results

- I. [Mg/Fe] in the Galactic disc
 - Precise [Mg/Fe] vs [Fe/H] (Santos-Peral et al. 2020)

Chemical structure of the Galactic disc \rightarrow formation and evolution

Chemodynamical trends: age-abundance relations, radial gradients

(Santos-Peral et al. 2021)

Comparison with Chemical Evolution Models (Palla et al. 2022)

II. [Eu/Fe] & [Sr/Fe] in Milky Way disc and halo

Heavy elements Eu/Sr as signatures of accreted populations (Santos-Peral et al., will be submitted soon)

Conclusions

- <u>Eu</u> considered <u>"pure" r-process</u> neutron-capture element (Type-II SNe, neutron star mergers...)

- <u>Eu</u> considered <u>"pure" r-process</u> neutron-capture element (Type-II SNe, neutron star mergers...)
 - Strongly enhanced r-II \rightarrow [Eu/Fe] > +1.0 dex
 - Moderately enhanced r-I \rightarrow +0.3 ≤ [Eu/Fe] ≤ +1.0 dex

(Beers & Christlieb 2005; Frebel 2018)

- <u>Eu</u> considered <u>"pure" r-process</u> neutron-capture element (Type-II SNe, neutron star mergers...)
 - Strongly enhanced r-II \rightarrow [Eu/Fe] > +1.0 dex

- > (Beers & Christlieb 2005 ; Frebel 2018)
- Moderately enhanced r-I \rightarrow +0.3 \leq [Eu/Fe] \leq +1.0 dex
- <u>Sr</u> mostly <u>s-process</u> neutron-capture element (low/intermediate-mass AGB stars)

16 / 24

- <u>Eu</u> considered <u>"pure" r-process</u> neutron-capture element (Type-II SNe, neutron star mergers...)
 - Strongly enhanced r-II \rightarrow [Eu/Fe] > +1.0 dex
 - Moderately enhanced r-I \rightarrow +0.3 ≤ [Eu/Fe] ≤ +1.0 dex

(Beers & Christlieb 2005 ; Frebel 2018)

16/24

- <u>Sr</u> mostly<u>s-process</u> neutron-capture element (low/intermediate-mass AGB stars)

[Eu/Fe], [Sr/Fe], [Eu/Sr], [Sr/alpha]...

 \rightarrow ideal to identify different progenitors and chemical enrichment histories

 $[Eu/Fe] \rightarrow higher in accreted populations$

 $[Eu/Fe] \rightarrow higher in accreted populations$

Enhanced [Eu/Fe] \rightarrow retrograde orbits (Lz>0)

II. [Eu/Fe] & [Sr/Fe] in the Milky Way

- <u>Complete table AMBRE</u> – <u>Selection of potential accreted population</u>

]	Lz > -:	l [10 ³ kpc km s ⁻¹]	&	Eorb > 0	(Helmi + 2018,Naidu +	+ 2020)
(Worley et al. 2012)		(De Pascale et al.	. 2014	.)	(Worley et al. 2016)	
> FEROS (R = 48000))	> HARPS (R ~ 1	1500)0) :	> UVES (R ~ 47000)	

Data & Methodology:

II. [Eu/Fe] & [Sr/Fe] in the Milky Way

Data & Methodology:

II. [Eu/Fe] & [Sr/Fe] in the Milky Way

leutron

- <u>Line selection:</u> Eu II (Å): 4129.72	6645.13	Sr II (Å): 4215.52
---	---------	--------------------

Eu II (Å): 4129.72 6645.13

Sr II (Å): 4215.52

Eu II (Å): 4129.72 6645.13

Sr II (Å): 4215.52

Moderately r-enhanced($+0.3 \le [Eu/Fe] \le +1.0 \text{ dex}$) points towards accreted population

Eu II (Å): 4129.72 6645.13

Sr II (Å): 4215.52

Moderately r-enhanced($+0.3 \le [Eu/Fe] \le +1.0$ dex) points towards accreted population

Eu II (Å): 4129.72 6645.13

Sr II (Å): 4215.52

Possible correlation of [Eu/Fe] with Lz, and higher Zmax

Neutron-capture elements Eu/Sr

- Line selection:

Eu II (Å): 4129.72 6645.13

Sr II (Å): 4215.52

Eu II (Å): 4129.72 6645.13

Sr II (Å): 4215.52

- Comparison with chemical evolution models of Marta Molero (work in progress, see Molero et al. 2021, 2023)

22 / 24

Neutron-capture elements Eu/Sr

- <u>Line selection:</u>

Eu II (Å): 4129.72 6645.13 Sr I

Sr II (Å): 4215.52

We do not observe that the s- and r-process ratio, [Sr/Eu], provide any remarkable insight into the chemical evolution histories of the different samples

No clear differences between the accreted vs. in-situ populations

23 / 24

Introduction

Data & Methodology

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample

Gaia DR2+EDR3+DR3: photometry, astrometry and distances → Stellar ages and orbital properties

Results

- I. [Mg/Fe] in the Galactic disc
 - Precise [Mg/Fe] vs [Fe/H] (Santos-Peral et al. 2020)

Chemical structure of the Galactic disc \rightarrow formation and evolution

Chemodynamical trends: age-abundance relations, radial gradients

(Santos-Peral et al. 2021)

Comparison with Chemical Evolution Models (Palla et al. 2022)

II. [Eu/Fe] & [Sr/Fe] in Milky Way disc and halo

Heavy elements Eu/Sr as signatures of accreted populations (Santos-Peral et al., will be submitted soon)

Conclusions

Conclusions:

I. Santos-Peral et. al. 2020

Analysis of [Mg/Fe] abundance estimate from observed spectra from ESO:HARPS (R = 115000), AMBRE Project

- Optimisation of the continuum normalisation for each stellar type and spectral line
- <u>Decreasing trend of [Mg/Fe]</u> even at supersolar metallicities ([M/H] > 0).

Solving discrepancies between observations and chemical evolution models (CEM) (e.g. Palla et al. 2020)

II. <u>Santos-Peral et. al. 2021</u>

Exploration of observed chemodynamical relations over 366 MSTO stars with Gaia DR2 data and ages

- <u>Steeper [Mg/Fe] radial gradient in the disc</u> compared to the literature.
- Appearance of the thin disc sequence (low-[Mg/Fe]) in the external regions, 10-12 Gyr ago with [M/H]

< -0.4, probably linked to external metal-poor gas accretion.

III. Palla et. al. 2022

Comparison with two-infall and parallel Chemical Evolution Models

- <u>Metal-poor low-Mg</u> stars from <u>outer regions</u>
- Super Metal-rich stars from inner parts
- Larger proportion of gas in the second infall could explain the low-Mg metal-poor sequence