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Galactic Archaeology history of the Milky Way analyzing fossil signatures  

Temporal evolution of chemodynamical correlations:
 → constraints on the physical processes of the Galactic formation

-External:  interaction with satellites, gas/stellar accretion, mergers...

                        -Internal:  radial migration (gas + stars), SN feedback...

Credit: 
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II.     Type Ia SN  →  Fe-peak elements    
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Hayden et al. (2017)

Adibekyan et al. (2012)

Thick disc:
   - appears to be old (> 8-10 Gyr)         - moderately metal-poor 
   - kinematically hotter, lower rotation     - [α/Fe]-enhanced
   - scale height ~ 750 pc                              - scale length ~ 3.5 kpc

Thin disc: 
   - relatively younger (< ~10 Gyr)             - moderately metal-rich       
   - more rotationally supported                 - low-[α/Fe] sequence
   - scale height ~ 300 pc                             - scale length ~ 2.8 kpc
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 - Galactic disc formation:  two different epochs of star formation?

Grisoni + 2017
Helmi + 2018

Ciuca + 2020

dilution of metal-poor gas in the outskirts?
 major accretion event by a massive satellite (e.g. Gaia-Enceladus)?

(~10 Gyr ago)
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  Data & Methodology:     I. [α/Fe])Mg/Fe] in the Galactic disc
1. Stellar spectroscopic sample: 

• HARPS ESO spectrograph (R ~ 115000)  
• Solar neighbourhood stars  

• AMBRE Project (Teff, log g, [M/H], [alpha/Fe], Vrad)   

Automatic spectral synthesis code GAUGUIN 

- [α/Fe])Mg/Fe] abundances:   →   Santos-Peral et al. 2020 

Optimisation of the spectral normalisation procedure for each stellar type and spectral line

(de Laverny et al. 2013 ; De Pascale et al. 2014)  

 (Bijaoui et al. 2012; Guiglion et al. 2016)

6 / 24

Mg I (Å):   5167.3   5172.7  5183.6   5528.4   4730.04   5711.09   6318.7  6319.24  6319.49
Strong saturated lines       Non-saturated lines       

 Developed for RVS → Gaia DR3 
(Gaia Radial Velocity Spectrograph)  

 



  Data & Methodology:     I. [α/Fe])Mg/Fe] in the Galactic disc
1. Stellar spectroscopic sample: 

• HARPS ESO spectrograph (R ~ 115000)  
• Solar neighbourhood stars  

• AMBRE Project (Teff, log g, [M/H], [alpha/Fe], Vrad)   

Automatic spectral synthesis code GAUGUIN 

- [α/Fe])Mg/Fe] abundances:   →   Santos-Peral et al. 2020 

2. Gaia DR2: photometry, astrometry and distances  

- Ages  

- Kinematic and orbital properties (ecc, zmax, Rapo, Rper, Rg)  

Optimisation of the spectral normalisation procedure for each stellar type and spectral line

Isochrone fitting method developed by Georges Kordopatis

Cross-math with AMBRE:HARPS catalogue by Emma Fernández-Alvar

Integration of the orbits by Emma Fernández-Alvar

(de Laverny et al. 2013 ; De Pascale et al. 2014)  

 (Bijaoui et al. 2012; Guiglion et al. 2016)

Santos-Peral et al. 2021  → 
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- Sample identical to Hayden+2017 (494 MSTO stars, Gaia DR1 + Mikolaitis+2017 [Mg/Fe] abundances)  

- Local Galactic disc: d < 300 pc ;  |z| < 1 kpc  

Santos-Peral + 2021 

  Results (I):                  Chemical definition of the thin disc 

Santos-Peral et al. 2021  → chemodynamical analysis of Galactic disc evolution

- Stars τ ≥ 12 Gyr  →  old (thick ; high-[Mg/Fe]) disc population
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Temporal evolution in the [α/Fe])Mg/Fe] – [α/Fe])M/H] plane :        

Rg ≤ 7.5 kpc

Rg > 7.5 kpc

Slower and continuous chemical evolution in the last 10 Gyr 

  Results (I):                            Global disc evolution  
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Observational analysis : 
       

I. Old high-[α/Fe])Mg/Fe] population (formed earlier and faster) pre-enriched the ISM 

Arrival of pristine gas (infall/gas rich merger) 

→  formation of the second [α/Fe])Mg/Fe] sequence on longer timescales

  Results (I):                         Global disc evolution:   summary   

II. Chemical discontinuity ( ~ 10 Gyr ago): 
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Overlap in time (~ 10 Gyr) and chemical similarities 
between the Gaia-Enceladus more metal-rich tail and the outer metal-poor low-[α/Fe])Mg/Fe] disc

Helmi et al. (2018)



  Results (I):            Comparison with Chemical Evolution Models  
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Palla et al. 2022  → chemical evolution scenarios directly compared to [Mg/Fe] abundances

- Comparison with the whole analysed AMBRE:HARPS sample (1066 stars)

- Delayed two-infall and parallel models, including radial migration prescriptions



 - Both delayed two-infall and parallel scenarios reproduce the bulk of the data 
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  Results (I):            Comparison with Chemical Evolution Models  



 - Both delayed two-infall and parallel scenarios reproduce the bulk of the data 

 - Problems in explaining the most metal-poor of the low-α sequence...  and the metal-rich tail

 - Explained in light of radial migration from outer and inner disc regions, respectively 14 / 24
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Palla et al. 2022  → chemical evolution scenarios directly compared to [Mg/Fe] abundances

 - Delayed two-infall & one-infall for outer                    and inner disc chemical tracks

 - Low-α metal-poor stars: two-infall model for outer radii with larger proportion of pristine gas, reaching lower metallicities. 
      One-infall model for outer radii reproduces the tail distribution

 - Low-α super-metal-rich stars: two-infall model for inner radii, with enrichment in the second gas accretion episode.
                                                           Without pre-enrichment or one-infall model, predict low [α/Fe] for a given metallicity.



  Outline:

Introduction 
Data & Methodology

Results 

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample       

Precise [Mg/Fe] vs [Fe/H]         

Gaia DR2+EDR3+DR3: photometry, astrometry and distances    
    

→   Stellar ages and orbital properties 

Chemical structure of the Galactic disc  → formation and evolution     

Chemodynamical trends:   age-abundance relations, radial gradients     

Comparison with Chemical Evolution Models      

Heavy elements Eu/Sr as signatures of accreted populations  

(Santos-Peral et al. 2020)

(Santos-Peral et al. 2021)

(Palla et al. 2022)

I. [Mg/Fe] in the Galactic disc

II. [Eu/Fe] & [Sr/Fe] in Milky Way disc and halo

Conclusions 

(Santos-Peral et al., 
will be submitted soon)



16 / 24

  Introduction:                 Galactic Archaeology of the Milky Way  Introduction:                 Galactic Archaeology of the Milky Way - r/s-process

  Neutron-capture elements (Z > 30, e.g. Eu, Sr, Ba): early stages of the formation and evolution of the Galaxy 



- Eu considered “pure” r-process neutron-capture element  (Type-II SNe, neutron star mergers…)

  Introduction:                 Galactic Archaeology of the Milky Way  Introduction:                 Galactic Archaeology of the Milky Way - r/s-process

  Neutron-capture elements (Z > 30, e.g. Eu, Sr, Ba): early stages of the formation and evolution of the Galaxy 

16 / 24



- Eu considered “pure” r-process neutron-capture element  (Type-II SNe, neutron star mergers…)

  Introduction:                 Galactic Archaeology of the Milky Way  Introduction:                 Galactic Archaeology of the Milky Way - r/s-process

  Neutron-capture elements (Z > 30, e.g. Eu, Sr, Ba): early stages of the formation and evolution of the Galaxy 

I.      Strongly enhanced r-II  →  [Eu/Fe] > +1.0 dex  

II.     Moderately enhanced r-I  →  +0.3 ≤ [Eu/Fe] ≤ +1.0 dex 
     

   

  

(Beers & Christlieb 2005 ; Frebel 2018)  

Hansen+2018

16 / 24



- Eu considered “pure” r-process neutron-capture element  (Type-II SNe, neutron star mergers…)

- Sr mostly s-process neutron-capture element  (low/intermediate-mass AGB stars)

  Introduction:                 Galactic Archaeology of the Milky Way  Introduction:                 Galactic Archaeology of the Milky Way - r/s-process

  Neutron-capture elements (Z > 30, e.g. Eu, Sr, Ba): early stages of the formation and evolution of the Galaxy 

I.      Strongly enhanced r-II  →  [Eu/Fe] > +1.0 dex  

II.     Moderately enhanced r-I  →  +0.3 ≤ [Eu/Fe] ≤ +1.0 dex 
     

   

  

(Beers & Christlieb 2005 ; Frebel 2018)  

Hansen+2018

16 / 24



- Eu considered “pure” r-process neutron-capture element  (Type-II SNe, neutron star mergers…)

- Sr mostly s-process neutron-capture element  (low/intermediate-mass AGB stars)

[α/Fe])Eu/Fe], [α/Fe])Sr/Fe], [α/Fe])Eu/Sr], [α/Fe])Sr/alpha]… 
→ ideal to identify different progenitors and chemical enrichment histories

  Introduction:                 Galactic Archaeology of the Milky Way  Introduction:                 Galactic Archaeology of the Milky Way - r/s-process

  Neutron-capture elements (Z > 30, e.g. Eu, Sr, Ba): early stages of the formation and evolution of the Galaxy 

I.      Strongly enhanced r-II  →  [Eu/Fe] > +1.0 dex  

II.     Moderately enhanced r-I  →  +0.3 ≤ [Eu/Fe] ≤ +1.0 dex 
     

   

  

(Beers & Christlieb 2005 ; Frebel 2018)  

Hansen+2018
Mashonkina+2010
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[α/Fe])Eu/Fe] → higher in accreted populations

  Introduction:                 Galactic Archaeology of the Milky Way  Introduction:                 Galactic Archaeology of the Milky Way - r/s-process

  Neutron-capture elements (Z > 30, e.g. Eu, Sr, Ba): early stages of the formation and evolution of the Galaxy 

Matsuno + 2021

Sakkari + 2018

Enhanced [α/Fe])Eu/Fe] → retrograde orbits (Lz>0) 
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 - Line selection:   

Moderately r-enhanced( +0.3 ≤ [α/Fe])Eu/Fe] ≤ +1.0 dex) points towards accreted population 

  Eu II (Å):   4129.72    6645.13                  Sr II (Å):   4215.52

  Results (II):                Neutron-capture elements Eu/Sr  

Matsuno + 2021

Good agreement with results 
from the GALAH DR3 survey
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 - Line selection:     Eu II (Å):   4129.72    6645.13                  Sr II (Å):   4215.52

  Results (II):                Neutron-capture elements Eu/Sr  

Possible correlation of [α/Fe])Eu/Fe] with Lz, and higher Zmax  
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 - Line selection:     Eu II (Å):   4129.72    6645.13                  Sr II (Å):   4215.52

 - Comparison with chemical evolution models of Marta Molero (work in progress, see Molero et al. 2021, 2023)

  Results (II):                Neutron-capture elements Eu/Sr  
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 - Line selection:     Eu II (Å):   4129.72    6645.13                  Sr II (Å):   4215.52

  Results (II):                Neutron-capture elements Eu/Sr  

 We do not observe that the s- and r-process ratio, [Sr/Eu], provide any remarkable insight 
into the chemical evolution histories of the different samples

 No clear differences between the accreted vs. in-situ populations



  Outline:

Introduction 
Data & Methodology

Results 

Automatic spectral synthesis code GAUGUIN for deriving abundances

The AMBRE observational data sample       

Precise [Mg/Fe] vs [Fe/H]         

Gaia DR2+EDR3+DR3: photometry, astrometry and distances    
    

→   Stellar ages and orbital properties 

Chemical structure of the Galactic disc  → formation and evolution     

Chemodynamical trends:   age-abundance relations, radial gradients     

Comparison with Chemical Evolution Models      

Heavy elements Eu/Sr as signatures of accreted populations  

(Santos-Peral et al. 2020)

(Santos-Peral et al. 2021)

(Palla et al. 2022)

I. [Mg/Fe] in the Galactic disc

II. [Eu/Fe] & [Sr/Fe] in Milky Way disc and halo

Conclusions 

(Santos-Peral et al., 
will be submitted soon)



I. Santos-Peral et. al. 2020

Exploration of observed chemodynamical relations over 366 MSTO stars with Gaia DR2 data and ages 
● Steeper [α/Fe])Mg/Fe] radial gradient in the disc compared to the literature.

● Appearance of the thin disc sequence (low-[α/Fe])Mg/Fe]) in the external regions,  10-12 Gyr ago with [α/Fe])M/H] 

< -0.4, probably linked to external metal-poor gas accretion.  

Comparison with two-infall and parallel Chemical Evolution Models   

● Metal-poor low-Mg stars from outer regions

● Larger proportion of gas in the second infall could explain the low-Mg metal-poor sequence 

● Optimisation of the continuum normalisation for each stellar type and spectral line

Analysis of  [Mg/Fe] abundance estimate from observed spectra from ESO:HARPS (R = 115000), AMBRE Project 

● Decreasing trend of [α/Fe])Mg/Fe] even at supersolar metallicities ([α/Fe])M/H] > 0). 

Solving discrepancies between observations and chemical evolution models (CEM) (e.g. Palla et al. 2020)

24 / 24

  Conclusions:                  

II. Santos-Peral et. al. 2021

III. Palla et. al. 2022

● Super Metal-rich stars from inner parts
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