

Improving Galactic Disk simulations with Gaia

Speaker: Alessandro Mazzi (Università di Padova)

Mazzi et al. (resubmitted to MNRAS after minor comments)

Previous work - Dal Tio et al. 2021

Multiple prescriptions for binary systems (TRILEGAL & BinaPSE)

- Binary evolution
- Binary parameters from Eggleton (2006) or Moe & Di Stefano (2017)
- Resolved/unresolved

Binary prescription does not affect much the solution, but adds about 20% uncertainty on SFR(t)

Investigating the SFR of the disk

(Partial) Models for single stars

- PARSEC v1.2S tracks (Bressan et al. 2012)
- TRILEGAL population synthesis code
- Kroupa (2002) IMF
- Partial models (PMs)
 - \circ 16 age bins
 - 7 metallicity sets
- Normalization to $1 M_{\odot} yr^{-1}$
- Photometric errors and completeness as post-processing on Hess diagrams for each slice (AST like procedure)

7.10 6.60 7.10 7.30 7.50 7.30 7.50 7.70 7.70 7.90 8.10 7.90 8.10 8.30 8.30 8.50 8.70 8.50 8.70 8.90 8.90 9.10 9.30 9.10 9.50 9.30 9.50 9.70 9.70 9.90 9.90 10.10

 $\log(t_1[yr]) \log(t_2[yr])$

(Partial) Models for binary stars

- PARSEC v1.2S tracks (Bressan et al. 2012)
- TRILEGAL population synthesis code
- Kroupa (2002) IMF for the primaries
- Moe & Di Stefano (2017) binary initial parameters' distribution
- Partial models (PMs)
 - 16 age bins
 - 7 metallicity sets
- Normalization to $1 M_{\odot} yr^{-1}$
- Photometric errors and completeness as post-processing on Hess diagrams for each slice (AST like procedure)
- Follow evolution through each age bin
- Evaluate resolvability (magnitude contrast + separation)

Blue line: 50% recoverability,Ziegler et al. (2018) Green line: same limit, Brandeker & Cataldi (2019) Figure from Dal Tio et al. (2021) Recipe for a total model

Finding the best model

$$\mathbf{M} = \mathbf{M}(\mathbf{SFH}, f_{\mathrm{bin}}, \Delta M_G, \Delta (G_{\mathrm{BP}} - G_{\mathrm{RP}})_0) + \mathbf{PM}_0$$

Two-step optimization

- Gradient descent (Adam)
- MCMC (NUTS)

Poisson likelihood

Priors

- uniform on SFR, AMR and f_{bin}
- Gaussian (µ=0) on magnitude and color shifts

CAMD region to fit

- Low uncertainties
- Maximize sensitivity to age
- Exclude AGB

Finding the best model

Best fit parameters

Star formation rate

SFR @ current position, not place of birth

Star formation rate: trend with |z| and scale height

The whole cylinder: surface SFR and mass

$$\Sigma_{\rm SFR} = 118.7 \pm 6.2 \, {\rm M}_{\odot} \, {\rm pc}^{-2}$$

$$M_{\rm tot} = 1.492 \pm 0.079 \times 10^7 \,{\rm M}_{\odot}$$

Some of the mass has already been returned to the ISM

The whole cylinder: AMR

 $[Fe/H](z) = -0.1786 - 0.065 \times |z|$

$$\overline{\mathrm{[Fe/H]}} = -0.20$$

Imig et al. (2023), APOGEE, red giants $-0.315 \pm 0.009 \text{ dex kpc}^{-1}$

Onat Tas et al. (2016), RAVE, red clump stars -0.157 ± 0.003 dex kpc⁻¹

Duong et al. (2018), GALAH, thin disk stars (low- α) -0.18 ± 0.01 dex kpc⁻¹

Hawkins (2023), LAMOST, stars O to F -0.15 ± 0.01 dex kpc⁻¹

Adding a spatial correlation

Idea: from their births, stars travel and get mixed over distance I

for a given age bin i

$$\mathbf{R}_{n,m;i} = r(\mathbf{x}_n, \mathbf{x}_m, l_i) = \exp\left\{-\frac{|\mathbf{x}_n - \mathbf{x}_m|^2}{2l_i^2}\right\}$$

Adding a spatial correlation

Conclusions

- We derived SFR and its spatial density from Gaia DR3 data
- Enhanced SFR at t~2-3 Gyr
- Dependence of SFR on |z| clear -> h_z(t)
- Age resolution of h_z(t) better than methods relying on selected stellar tracers
- Spatial correlation appears to reduce noise
- Results can be implemented easily in TRILEGAL

- Low level young SFR at all |z| needs more inspection (Models improvements? Data issues?)
- Total surface mass larger than estimates from studies using kinematic information (matter recycling?)

G

 G_{BP}

 G_{RP}

Finding the best model

1. $PM_i([Fe/H]_i) = (1 - f_i)PM_i^- + f_iPM_i^+$

 $f_i = ([Fe/H]_i - [Fe/H]_i^-)/([Fe/H]_i^+ - [Fe/H]_i^-)$

2.
$$M = PM_0 + \sum_{i=1}^{16} a_i \left[(1 - f_{bin}) PM_{sin,i} + f_{bin} PM_{bin,i} \right]$$

Scale heights

		$f_{ m exp}$				$f_{ m sech^2}$			
$\log(t_1[yr])$	$\log(t_2[yr])$	A	h_z	С	χ^2	A	h_z	С	χ^2
		$[10^{-11} M_{\odot} yr^{-1} pc^{-3}]$	[pc]	$[10^{-11} M_{\odot} yr^{-1} pc^{-3}]$		$[10^{-11} M_{\odot} yr^{-1} pc^{-3}]$	[pc]	$[10^{-11} M_{\odot} yr^{-1} pc^{-3}]$	
6.60	7.10	1.695 ± 0.674	76.7 ± 15.6	0.02605 ± 0.00462	25.8	1.178 ± 0.445	106.9 ± 19.2	0.26945 ± 0.00465	27.1
7.10	7.30	3.860 ± 1.244	46.8 ± 8.6	0.04999 ± 0.00531	13.3	2.858 ± 0.816	60.3 ± 9.8	0.50915 ± 0.00539	14.0
7.30	7.50	2.797 ± 1.149	36.2 ± 6.6	0.03326 ± 0.00292	12.8	1.497 ± 0.569	58.2 ± 9.0	0.33437 ± 0.00292	13.0
7.50	7.70	3.040 ± 1.215	40.1 ± 6.3	0.01333 ± 0.00218	19.7	1.798 ± 0.611	63.4 ± 7.6	0.13443 ± 0.00212	18.7
7.70	7.90	2.637 ± 0.743	46.3 ± 5.3	0.00899 ± 0.00099	11.4	1.507 ± 0.409	73.7 ± 7.6	0.00906 ± 0.00101	11.9
7.90	8.10	1.769 ± 0.565	41.8 ± 5.3	0.00784 ± 0.00119	28.6	1.071 ± 0.275	70.3 ± 6.6	0.00788 ± 0.00111	25.0
8.10	8.30	2.245 ± 0.704	43.9 ± 6.1	0.00513 ± 0.00078	33.7	1.427 ± 0.374	68.4 ± 7.2	0.00516 ± 0.00075	31.1
8.30	8.50	1.590 ± 0.221	70.9 ± 4.9	0.00383 ± 0.00055	20.9	1.043 ± 0.144	104.8 ± 6.9	0.00402 ± 0.00057	22.9
8.50	8.70	2.822 ± 0.657	55.3 ± 7.7	0.00226 ± 0.00113	176.4	2.018 ± 0.401	76.1 ± 8.4	0.00234 ± 0.00113	175.0
8.70	8.90	2.625 ± 0.203	90.7 ± 4.7	0.00270 ± 0.00074	72.2	1.816 ± 0.134	129.2 ± 6.0	0.00297 ± 0.00075	75.1
8.90	9.10	2.804 ± 0.143	120.0 ± 4.4	0.00315 ± 0.00108	80.9	1.974 ± 0.090	167.0 ± 5.1	0.00412 ± 0.00099	71.9
9.10	9.30	2.625 ± 0.147	145.8 ± 6.3	0.00382 ± 0.00222	179.6	1.862 ± 0.064	204.0 ± 5.0	0.00655 ± 0.00135	76.6
9.30	9.50	2.972 ± 0.196	211.1 ± 12.8	0.00000 ± 0.00653	573.8	2.096 ± 0.053	307.1 ± 6.0	0.00163 ± 0.00218	102.3
9.50	9.70	1.230 ± 0.135	252.2 ± 33.5	0.00000 ± 0.00814	396.6	0.865 ± 0.048	392.4 ± 20.4	0.00000 ± 0.00360	138.3
9.70	9.90	1.170 ± 0.040	373.7 ± 23.0	0.00000 ± 0.01244	92.1	0.890 ± 0.021	424.0 ± 11.1	0.03903 ± 0.00494	48.7
9.90	10.10	1.210 ± 0.027	512.0 ± 32.6	0.00000 ± 0.02142	104.8	0.896 ± 0.023	503.7 ± 17.3	0.09480 ± 0.01016	125.9

Adding a spatial correlation

Comparison with star counting methods

Comparison with star counting methods

			$f_{ m exp}$				$f_{ m sech^2}$			
Phase	$\log(t_1[yr])$	$\log(t_2[yr])$	Α	h_z	С	χ^2	A	h_z	С	χ^2
	ulational can checke southout	- another provide to de-	$[10^{-5} \text{counts pc}^{-3}]$	[pc]	$[10^{-5} \text{counts pc}^{-3}]$		$[10^{-5} \text{counts pc}^{-3}]$	[pc]	$[10^{-5} \text{counts pc}^{-3}]$	
	9.3	9.4	0.800 ± 0.062	211.4 ± 16.8	0.0080 ± 0.0048	25.4	0.577 ± 0.040	278.6 ± 16.1	0.0144 ± 0.0038	24.1
	9.4	9.5	1.990 ± 0.123	264.2 ± 19.5	0.0015 ± 0.0146	52.5	1.461 ± 0.071	335.3 ± 14.5	0.0301 ± 0.0084	37.7
SGB	9.5	9.6	5.009 ± 0.221	296.3 ± 16.8	0.0000 ± 0.0319	75.0	3.693 ± 0.104	376.8 ± 9.8	0.0685 ± 0.0148	36.2
	9.6	9.7	3.623 ± 0.154	318.7 ± 19.4	0.0000 ± 0.0283	53.3	2.646 ± 0.076	408.7 ± 11.7	0.0497 ± 0.0137	29.2
	9.7	9.8	3.378 ± 0.149	388.1 ± 31.6	0.0000 ± 0.0497	64.8	2.536 ± 0.078	463.3 ± 16.1	0.0832 ± 0.0217	35.5
	9.8	9.9	3.126 ± 0.107	445.3 ± 36.1	0.0000 ± 0.0585	39.8	2.352 ± 0.077	470.2 ± 19.2	0.1689 ± 0.0270	35.4
	9.9	10.0	3.096 ± 0.114	542.8 ± 63.6	0.0000 ± 0.1062	50.5	2.285 ± 0.090	576.5 ± 35.8	0.1804 ± 0.0566	57.5
	10.0	10.1	1.584 ± 0.116	367.7 ± 47.0	0.0000 ± 0.0320	77.0	1.109 ± 0.076	497.9 ± 41.9	0.0117 ± 0.0239	84.8
Upper main sequence			22.892 ± 1.160	106.3 ± 4.0	0.0199 ± 0.0115	167.4	16.184 ± 0.882	147.0 ± 5.5	0.0314 ± 0.0127	219.5
Red Clump			10.890 ± 0.307	288.3 ± 10.2	0.0571 ± 0.0436	61.8	8.131 ± 0.257	347.0 ± 9.9	0.2639 ± 0.0341	87.6

Integrated SFR

$\log(t_1[yr])$	$\log(t_2[yr])$	$\Psi_{\rm SFR}$	$\Psi_{\exp}(t)$	$\Psi_{\rm sech^2}(t)$
		[10-	$^{-9}M_{\odot}yr^{-1}pc$	-2]
6.60	7.10	$6.20^{+3.00}_{-2.60}$	3.29	3.14
7.10	7.30	$5.70^{+4.00}_{-2.70}$	4.93	4.63
7.30	7.50	$3.10^{+2.60}_{-1.50}$	2.90	2.52
7.50	7.70	$2.80^{+2.20}_{-1.40}$	2.79	2.59
7.70	7.90	$2.80^{+2.30}_{-1.20}$	2.68	2.43
7.90	8.10	$2.11^{+1.00}_{-0.82}$	1.69	1.69
8.10	8.30	$2.44^{+1.09}_{-0.83}$	2.11	2.07
8.30	8.50	$2.31_{-0.72}^{+0.76}$	2.36	2.28
8.50	8.70	$4.21_{-0.54}^{+0.59}$	3.18	3.12
8.70	8.90	$4.97^{+0.54}_{-0.47}$	4.83	4.76
8.90	9.10	$6.81_{-0.47}^{+0.50}$	6.81	6.69
9.10	9.30	$7.79_{-0.43}^{+0.45}$	7.76	7.75
9.30	9.50	$12.99^{+0.53}_{-0.54}$	12.52	12.89
9.50	9.70	$7.09^{+0.59}_{-0.59}$	6.17	6.74
9.70	9.90	$8.60^{+0.49}_{-0.48}$	8.49	8.37
9.90	10.10	$11.47^{+0.39}_{-0.38}$	11.44	11.00