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Abstract: We use the Besançon Galaxy Model FASt Approximate Simulations (BGM FASt)
framework together with the Approximate Bayesian Computation (ABC) algorithm to derive the
posterior probability distribution function of the parameters defining the initial mass function (IMF)
and the star formation history (SFH) in the Solar neighbourhood. We propose new strategies to
unveil the influence of some BGM Std model ingredients from the Poissonian distance metric and
the posterior distribution of the ratio between pseudo-simulation and data in the Hess diagrams.
Gaia DR3 up to G=13 and a set of consolidated executions of the BGM FASt + ABC code on a
Cloud Environment, using both different Mother Simulations and priors, allow us to confirm the
existence of the star formation burst in the Galactic disc 2-4 Gyr ago proposed by [Mor et al. 2019].
Furthermore, for the composite IMF, we obtain the slopes of α2 and α3 constrained to the range
[1.7, 2.8] and [1.8, 2.4], respectively, in agreement with recent values from the literature. The wide
range of values obtained for the total stellar surface mass density of the thin disc at the Solar
neighbourhood, between 30-50 M⊙pc

−2, demonstrates that, before concluding on the set of best
ingredients for the Galactic stellar population model, we shall loop the process to fit again both, the
Galactic potential as described in Robin et al. [2022], and the BGM FASt IMF and SFH parameters.

I. INTRODUCTION

The star formation history (SFH) of the thin disc is one
of the magnitudes that, at present, better characterizes
the evolution of the Milky Way in the last 10 Gyr, giving
account to the internal and external processes responsible
for the variation in the star formation rate (SFR) of the
Galaxy. Completely entangled with the SFH, the initial
mass function (IMF) of the thin disc plays a key role in
the chemical evolution of this stellar system. These are
the reasons that explain why the precise determination
of the IMF and the SFH has centred the efforts of the
Galactic research community from the middle of the 20th
century to the present Gaia era (Mor et al. [2019], Syso-
liatina and Just [2021], Ruiz-Lara et al. [2020], Dickson
et al. [2023], Bernard [2018], Cignoni et al. [2007], Kroupa
[2008], Haghi et al. [2020], Li et al. [2023], among oth-
ers).
For this purpose, a wide range of tools and techniques
have been implemented. Mor et al. [2019] use the
Besançon Galaxy Model Fast Approximate Simulations
(BGM FASt) together with the Approximate Bayesian
Computation (ABC) to derive the SFH and the IMF of
the thin disc of the Milky Way in the Solar neighbour-
hood. For the former, they report an exponential de-
crease with a burst of star formation peaking 2-3 Gyr
ago. The origin of this SFR enhancement is still un-
known. In Mor et al. [2019], they propose that it comes
from a recent merger between the Milky Way and a gas-
rich satellite galaxy. This hypothesis is in concordance
with the results found in Stewart et al. [2008] perform-
ing cosmological simulations within the ΛCMD model,
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where ∼ 95% of Milky Way-sized halos have accreted at
least one object in the last 10 Gyr. The minor merger
scenario is also coherent with the discovery of an external
perturbation of the Milky Way due to the presence of the
Sagittarius dwarf galaxy made by Antoja et al. [2018].
More recently, Sysoliatina and Just [2021] propose an al-
ternative strategy to constrain 22 Galactic parameters
of the Justin-Jahreiβ model using a Bayesian technique
to infer their posterior probability distribution function
(PDF) from Gaia DR2 and APOGEE data for stars
of the local neighbourhood with apparent magnitude
7 < G < 17. They find two bursts in the SFH in the last
∼ 4 Gyr which they relate to gas infalls. Ruiz-Lara et al.
[2020] modelled Gaia DR2 observed colour-magnitude di-
agrams with local stars inside a bubble of radius ∼ 2 kpc
around the Sun to infer the impact of the pericentric pas-
sages of the Sagittarius dwarf galaxy in the SFH.
For the derivation of the initial mass function, most of the
studies analyze the star population on clusters and asso-
ciations to infer some clues on a more general IMF [Dick-
son et al. 2023, Kroupa 2008, Haghi et al. 2020]. One
of the most recognized is Kroupa [2008], which presents
a canonical stellar IMF arising from the correction of
the classical Salpeter slope in the low-mass regime us-
ing a multi-dimensional optimization technique on un-
resolved multiple stellar systems. More recently, Haghi
et al. [2020] performed a series of N-body simulations
to study the evolution of star clusters using the NBODY6
code. A different approach is taken in Dickson et al.
[2023], where they present the results of the best-fitting
multimass models for 37 Milky Way globular clusters,
obtaining values compatible with the classical Salpeter
IMF in the high-mass regime.
Other studies make use of alternative techniques to derive
the IMF. In Mor et al. [2019], the BGM FASt and ABC
method is used to simultaneously fit the IMF and the
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SFH. For the IMF they use a three-truncated power-law
applied to Gaia DR2 up to G < 12. By using a com-
pletely different approach, Pelkonen et al. [2021] perform
a high-resolution star-formation simulation with realistic
physical conditions in clouds to infer the IMF from the
core mass function under the idea that there is a one-
to-one relation between stars and cores. More recently,
Li et al. [2023] used the LAMOST spectrum of ∼ 93000
M-dwarf stars in the Solar neighbourhood (100-300 pc)
to report a variable IMF in the low-mass range which
depends on the metallicity and the stellar age. This non-
exhaustive list shows only some of the examples of inter-
est in determining this fundamental function.
Within the different explored Galactic models, the Be-
sançon Galaxy Model (BGM; Robin et al. [2003]) is
a holistic population synthesis approach that has been
widely used in the last decades for the statistical study
of the formation and evolution of the Milky Way. From
its new strategy [Czekaj et al. 2014], it was possible
to directly use the IMF and the SFH to generate a
full-sky thin disc population to be compared with data
from Tycho-2, constituting the starting point of the per-
formance of Galactic parameters inference with BGM.
More recently, the outcomes of the Gaia DR2 astrometry
opened a new opportunity for the improvement of the ro-
bustness of the BGM modelling. The attempt to include
the dynamical self-consistency was tackled by fitting the
gravitational potential of the Milky Way to the stellar
kinematics and densities of Gaia DR2 [Robin et al. 2022].
At this point, it becomes essential the re-determination
of the thin disc SFH and IMF, a task that is addressed
in this work.
At present, the execution of a full-sky catalogue of sim-
ulated stars using the standard BGM model (hereinafter
BGM Std) implies a computational cost that cannot be
assumed for the inference of Galactic parameters. This
process demands the use of statistically robust approxi-
mate models and powerful computational resources. To
respond to these requirements, we present in this work
the implementation of BGM FASt + ABC in a Cloud
Environment and, for the first time, its execution consid-
ering the full-sky Gaia DR3 up to G < 13 [Gaia Collabo-
ration et al. 2016, 2022]. With these new executions, we
are doubling the number of stars with respect to previ-
ous works [Mor et al. 2019], as well as multiplying by a
significant factor the computational resources.
In Sect. II we set the theoretical background of BGM
FASt and some upgrades on its new implementation in
the Cloud. In Sect. III we explain how ABC works and
we describe the statistical parameters to be used to an-
alyze the fitting process together with a set of new tools
to test and validate the obtained results. In Sect. IV we
show the main characteristics of the executions run in the
Cloud Environment. In Sect. V we present the physical
results obtained for the SFH and the IMF, comparing
them with recent data from the literature. Finally, in
Sect. VI, we give the conclusions of this work and what
we consider are future tasks to be developed during the

next months.

II. GALACTIC PHYSICS INSIDE BGM FAST

A. Basic concepts of BGM FASt

The Besançon Galaxy Model Fast Approximate Simu-
lations is based on the idea that it is possible to generate
pseudo-simulations (PS) of the Besançon Galaxy Model
weighting the stars of a pre-sampled simulation (so-called
Mother Simulation and labelled MS) obtained from BGM
Std [Mor et al. 2018]. Then, since BGM FASt simulations
are computationally cheap (∼ 104 times faster than in
BGM Std), the Galactic parameters inference with tools
such as the Approximate Bayesian Computation becomes
feasible.
Following the scheme described in Fig. 1, a BGM FASt
PS departs from two main ingredients: a MS and a set
of the parameters to infer θ̄k. The former is the result
of the application of BGM Std [Czekaj et al. 2014], a
population synthesis model that uses fundamental func-
tions such as the space density distributions, the initial
mass function, the star formation history and the age-
metallicity relation of each Galactic component (e.g. thin
disc, thick disc, halo, bulge and bar), among others, to
generate stars with given masses M , ages τ and metal-
licities Z in each volume element. Then, it makes them
evolve using a set of stellar evolutionary tracks. The ad-
ditional intrinsic magnitudes of each star Teff , log g and
L are obtained after taking into account a binarity treat-
ment. Finally, BGM Std converts these magnitudes into
the observed ones following two steps: first, it applies
atmosphere models to get the absolute magnitudes MV

and the intrinsic colours BpRpint; and then, it includes
the effects of reddening and extinction of the interstellar
medium to get the apparent magnitudes mV and the ob-
served colours BpRpobs, which constitute the observables
that can be compared with the catalogue data. For the
latter, the set of input parameters θ̄k is obtained from a
prior probability distribution function ρ̄t(θ̄) that is im-
posed by the user in the first step (t = 0) and automat-
ically build by ABC in the following ones (t > 0) using
the accepted sets of parameters in the previous steps.
Therefore, BGM FASt can be considered a function of
these two ingredients. It gives rise as output to a mod-
ified MS, a PS, in which each star is associated with a
weight. In the computation of these weights resides the
core of BGM FASt.
We can define the ith parameter space as the N -
dimensional space of the i-component of the Galaxy,
which contains all the parameters involved in the dis-
tribution function of the generated stars of that Galactic
component. Mathematically the ith parameter space is
defined as ¶i = τ×M×Z×x̄× v̄× p̄, where τ , M , Z, x̄, v̄
are the age, the initial mass, the metallicity, the position
and the velocity of the stars of the i-component, respec-
tively, and p̄ accounts for other independent parameters.
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Then, we can consider a general distribution function
of the generated stars for the ith Galactic component,
Di(τ,M,Z, x̄, v̄, α, p̄′), where now α ≡ [α/Fe] is written
explicitly and p̄′ concentrates the rest of the parameters.
Marginalizing all the parameters except p̄′, we obtain
the distribution function of the generated stars for the
i-component in the reduced space ¶ir, Gi(τ,M,Z, x̄, v̄, α).
BGM FASt is based on the idea that the number of stars
generated in an interval of the parameter space ¶i is pro-
portional to the mass dedicated to generate stars in that
interval [Mor et al. 2018]. Therefore, the weight of the jth

interval of the reduced space ∆¶i,jr is proportional to the
integral along that interval of the distribution function
of the generated stars for the ith Galactic component in
the PS weighted by the mass. The normalized weight ωj
is finally obtained by dividing the resultant value by the
corresponding integral of the original MS,

ωj =

∫
∆¶i,j

r
GPSi (τ,M,Z, x̄, v̄, α) ·Md¶ir∫

∆¶i,j
r

GMS
i (τ,M,Z, x̄, v̄, α) ·Md¶ir

. (1)

The rigorous mathematical development of the concept
as well as the practical implementation shown in Fig. 1
are explained in detail in Mor et al. [2018].
BGM FASt ends when the PS is generated from the

application of the weights computed in Eq. 1 to the
stars of the MS. At this point enters ABC, which uses
a summary statistic and a distance metric to quantify
the resemblance between the PS and the catalogue data
(see Subsect. III A and III B for more details on the con-
sidered summary statistic and distance metric). Then,
it compares the obtained distance δk with the threshold
of the tth ABC step. If it is lower, the set of proposed
parameters θ̄k is accepted. In this case, after a given
number of accepted simulations per step Nacc.sim, θ̄k be-
comes part of the new prior or posterior PDF ρ̄t(θ̄). If
the distance δk is greater than the threshold δt, the set
of parameters is rejected.
This process is carried out along two loops. On the one
hand, the distance threshold starts at a determined upper
limit that diminishes at each step t until the established
lower limit is achieved or the imposed maximum num-
ber of steps is reached. On the other hand, at each step
the incorporation of sets of parameters θ̄k is repeated
until reaching the number of accepted simulations per
step necessary to obtain a statistically robust PDF ρ̄(θ̄).
While the distance threshold of the step is above the
lower limit, the derived ρ̄t(θ̄) becomes part of the prior
PDF of the next step. Once the lower limit is achieved,
ρ̄t(θ̄) ≡ ρ̄(θ̄) becomes the approximate posterior PDF of
the BGM FASt parameters.

B. The new BGM FASt implementation

For the last published results arising from the appli-
cation of BGM FASt [Mor et al. 2019] it was chosen a
15-dimensional space for the parameters inference, in-

cluding the three slopes of a three-truncated power-law
IMF, the nine parameters of a non-parametric SFH cov-
ering the range of ages of the thin disc (0-0.1 Gyr, 0.1-1
Gyr, 1-2 Gyr, 2-3 Gyr, 3-5 Gyr, 5-7 Gyr, 7-8 Gyr, 8-
9 Gyr, 9-10 Gyr), the volume stellar mass density of the
young and old thick discs, and the radial scale length1. In
this work, the inference is made within a 14-dimensional
parameters space composed of the aforementioned three
slopes of the IMF, and 11 parameters of a non-parametric
SFH. The pass from nine to 11 SFH parameters arises
from splitting the ages intervals 3-5 Gyr and 5-7 Gyr
into pieces of one Gyr to get a better resolution. We
consider in this case that the contribution of the young
and old thick discs is well-described by the MS, so we do
not fit them. Finally, we assume the MS to be dynami-
cally self-consistent, which lets us not include the radial
scale length in the inference parameters space. The pos-
sible consequences and limitations of these assumptions
are discussed in Sect. V and VI.
These changes imply some modifications of the original
equations of BGM FASt. For instance, the computa-
tions regarding the density laws with the Einasto pro-
files are no longer in use since we assume the dynamical
self-consistency of the MS. Under this consideration, we
suppress the spatial dependencies in the new BGM FASt
implementation, keeping only the IMF and the SFH as
the BGM FASt parameters to infer. The weight equa-
tion, therefore, is extremely simplified to

ωj =

∫
∆τi,j

∑i,PS
⊙ (τ)dτ

∫
∆Mi,j

ξPSi (M)MdM∫
∆τi,j

∑i,MS
⊙ (τ)dτ

∫
∆Mi,j

ξMS
i (M)MdM

, (2)

where
∑

⊙,i(τ) is the star formation rate of the ith

Galactic component at the Solar neighbourhood at time
τ , ξi(M) is the value of the IMF at M , we consider
dτ = ∆τi,j equal to the age intervals given in Tab. IV,
dM = 0.025 and ∆Mi,j corresponds to the ranges of mass
of the IMF indicated in Mor et al. [2018].
On the other hand, in Mor et al. [2019] they use a MS
generated assuming a parametric SFH. In this case, as
can be seen in Subsect. IVA, we set as input two dif-
ferent MS: one with a non-parametric SFH and another
with a parametric SFH. For the former, we have slightly
modified the code to use a non-parametric SFH both for
the PS and the MS (numerator and denominator of Eq.
(2), respectively). A schematic description of the con-
tent of the new bgmfast Python package can be found
in Appendix C.

1 Note that all the parameters correspond to the Solar neighbour-
hood.
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where ¶  and ¶

Analytically: ¶

¶
¶

¶
¶

BGM FASt 

PSSimulation of "what we observe"
(weigthed MS)

Poissonian distance metric 

, where 

Accept Reject 
ABC

Prior/posterior PDF
After 

MS Simulation of "what we observe"

BGM Std

Space density distribution (local mass density +
density laws) + kinematics + dynamics + IMF +

SFH + chemistry (distribution + evolution)
( , , )

Binarity treatment + stellar evolutionary models  ( , , , , , )

Atmosphere models ( , , , , , , )

Extinction maps ( , , , , , , )

Catalog data 

FIG. 1: Flux diagram of the process involving BGM Std, BGM FASt and ABC. Subscript and superscript legend:
ith Galactic component, tth ABC step, kth set of BGM FASt parameters, nth bin of the CMD/LD, and jth interval

of the reduced parameter space. See in Subsect. IIA a detailed explanation of this scheme.
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III. TAKING ADVANTAGE OF BGM FAST:
THE APPROXIMATE BAYESIAN

COMPUTATION

The possibility of inferring Galactic parameters by per-
forming iterative PS is the most remarkable opportunity
arising from BGM FASt. However, it is crucial the choice
of a statistically robust and computationally cheap iter-
ative mechanism to get a final set of parameters with
mathematical and physical sense. In this work, we an-
alyze ABC’s performance and give some ideas on how
to understand its results within the framework of BGM
FASt.
From the Bayes’ theorem,

P (A|B) =
P (B|A)P (A)

P (B)
, (3)

it is possible to compute the exact PDF of a parameter
A from the likelihood function, P (B|A), the prior PDF
of A, P (A), and the total probability of B, P (B), which
behaves as a normalization constant. In the framework
of parameters inference, A ≡model and B ≡data. For
very complex models such as BGM FASt (a large number
of parameters and extensive data sets), it is mathemati-
cally impossible or computationally prohibitive to obtain
the exact likelihood function. To surpass this inconve-
nient and following the approach presented in Mor et al.
[2018], in BGM FASt we use a Python implementation
of a sequential Monte Carlo Approximate Bayesian Com-
putation algorithm (SMC-ABC) [Jennings and Madigan
2017], which carries out the iterative process described
in Subsect. II A to estimate the posterior PDF of the
parameters to infer.
According to that description, there are several elements
to adjust when we work with SMC-ABC: 1) the summary
statistics, 2) the distance metric, 3) the distance thresh-
olds, 4) the number of accepted simulations per step, and
5) the maximum number of steps.

A. Summary statistics

The summary statistics S is the responsible for giv-
ing a proper shape to the pseudo-simulated data Dsim
and the observed data Dobs to be able to compare them.
Therefore, in the case of parameters inference, it has to
capture the maximum information on the effects of the
set of parameters θ̄. If the chosen summary statistics S
is a sufficient statistic for D, then the posterior PDF de-
rived from the summary statistics P (θ̄|Sobs) is equivalent
to the posterior PDF obtained from the complete set of
data P (θ̄|Dobs). Considering this statement, in this work
we use S instead of D to represent the sufficient statistics
as it is done in Mor et al. [2018], Jennings and Madigan
[2017].
In BGM FASt, we take as a sufficient statistics a binned
modified Hess diagram M ′

G vs. Bp − Rp (hereinafter
CMD), where M ′

G = G + 5 log10(ω̄/1000) + 5 and Bp −

Rp ≡ BpRp is the observed colour index of the filters
Bp and Rp. Note that the computed M ′

G is different to
the intrinsic MG because the former does not take into
account the extinction due to the interstellar medium.
The assumption behind the use of M ′

G is that the ex-
tinction maps in the MS are good enough to characterize
the extinction suffered by the light captured by Gaia.
We assume it is true for stars within the colour range
−0.42 < (Bp−Rp) < 2.73, where the photometric trans-
formation of Evans et al. [2018] is valid. Therefore, we
only fit the CMD within these limits.
We build three CMDs characterizing different Galactic
latitudes (|b| < 10, 10 < |b| < 30 and |b| > 30) for stars
with −1 < M ′

G < 5 to avoid losing valuable information
on the effects of a given IMF and SFH in different re-
gions. Stars with an absolute magnitude M ′

G > 5 are
injected into a colour-integrated modified Hess diagram
(modified luminosity distribution, hereinafter LD), ow-
ing to the lack of stars with M ′

G > 5 in the ranges of
G explored (see Subsect. IVA). We take 63 BpRp bins
(∆BpRp = 0.05 mag) and 24 M ′

G bins (∆M ′
G = 0.25

mag) for the CMD and 40 bins for the LD (∆M ′
G = 0.25

mag), which give us a reasonable relation between the
conservation of the stars information and a statistically
sufficient number of stars per bin.

B. Distance metric

Once we have the sufficient statistics, we need to define
a distance δ to quantify how similar Ssim and Sobs are.
For this work and following the initial idea of BGM FASt
[Mor et al. 2018], we use the so-called Poissonian distance
metric

δP (Sobs,Ssim) =

∣∣∣∣∣
Nbins∑
n=1

qn[1−Rn + ln(Rn)]

∣∣∣∣∣ , (4)

where Rn = fn/qn is defined as the quotient between the
number of stars in the nth bin of the CMD/LD in the
model (fn) and in the catalogue data (qn), and Nbins is
the total number of bins. When fn = 0 or qn = 0, we
substitute fn by fn+1 and qn by qn+1 to avoid problems
with the quotient and the logarithm. When the PS fits
perfectly the data, Rn = 1 ∀n and δP (Sobs,Ssim) = 0.
There are three elements that play a key role in the de-
termination of the distance: the limiting apparent mag-
nitude G (the number of stars in the MS and in the cat-
alogue), the input MS, and the set of BGM FASt param-
eters θ̄. In order to better understand their effects on
the resulting distance, it is good to express Eq. (4) as
follows:

δP (Sobs,Ssim) = N⋆

∣∣∣∣∣
Nbins∑
n=1

sn[1−Rn + ln(Rn)]

∣∣∣∣∣ , (5)

where N⋆ is the total number of stars in the data and
sn the fraction of N⋆ contained in the nth bin. From
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this equation, we can clearly separate the effects on the
distance into two parts:

• The limiting magnitude G, characterized by the
number of stars in the catalogue N⋆.

• The model behind, including the physics of the MS
and the BGM FASt set of parameters θ̄, defined by
Rn or, more extensively, by the absolute value of
the summation in Eq. (5). We call this right-most
part of Eq. (5) the intrinsic physical distance.

For the former, one can think from Eq. (5) that increas-
ing the number of stars in a given factor will also increase
the distance between the PS and the catalogue data in
the same factor. That is partially true. On one hand, if
we consider a sample up to a given magnitude and then
we artificially duplicate each star both in the sample and
in the data, we will obtain two times the original dis-
tance since the effects of the model are exactly the same
in the two cases. But this is not the case if the increas-
ing number of stars is due to a larger limiting apparent
magnitude G. In this case, the physics behind the model
changes, which has a direct impact on the computation
of the distance δP .
In general, it will be larger than the one expected for the
increasing number of stars, since more complex physics
is involved. For instance, the contribution of the halo or
the thick disc will be more important, since far distances
and weak stars will be reached. Taking into account that
the modelling of the Milky Way beyond the thin disc is
still precisely unknown, the correspondence between the
PS (which is a weighted MS) and the observed data will
be worse. In that case, the distribution of R in Eq. 4
will be broader and far from the ideal R = 1, and the re-
sultant distance probably higher due to the effect of the
intrinsic physical distance2.
Also, sometimes a relatively small increase in the mag-
nitude complements regions with low statistics, reducing
the effects of outliers and, therefore, implying an increas-
ing distance smaller than the expected one. See an ex-
ample of the behaviour of the intrinsic physical distance
in Appendix B.

C. Distance thresholds

The third key point is the choice of thresholds for the
ABC process. The idea resides in the selection of intelli-
gent upper and lower limits to obtain a final approximate
PDF of θ̄ statistically robust that represents a scientific
improvement with respect to previous studies. This con-
cept gives some clues on the way to choose the distance

2 It is true that a broader distribution of R can induce lower dis-
tances if there is a compensation between the values < 1 and > 1.
In this case, will also be important to analyze the distribution
itself, its broadness and dispersion.

thresholds.
For the upper limit δmax, we select the distance obtained
from imposing the parameters of the MS22 in BGM FASt
(see Subsect. IVA for a detailed description of the MS).
Behind this selection, we accept that the MS presented
in Robin et al. [2022] is currently the best modelling of
the Milky Way within the BGM Std framework. For the
lower limit δmin, we run exploratory executions to find
the smallest possible value reachable before accomplish-
ing the maximum number of steps, which we set equal
to 100 steps for all executions. Finally, the number of
accepted PS per step Nacc.sim. is chosen as a balance be-
tween the computation time and a good sampling of θ̄ for
the proper evolution of the PDF. In this work, we choose
a value of Nacc.sim. = 200.

FIG. 2: Flux diagram of the approximate
cross-checking. See Subsect. IIID for a detailed

description of this scheme.

D. The new approximate cross-checking strategy

We propose a first approximate solution to give a gen-
eral idea of both the resemblance between the MS and
the catalogue data, and the fineness of the derived BGM
FASt parameters given the distance δP and the R dis-
tribution arising from a BGM FASt + ABC execution.
In Subsect. III B we explained how from Eq. (5) it is
derived a triple contribution to the total Poissonian dis-
tance δP : the total number of stars in the data N⋆, the
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closeness of the MS to the catalogue data, and the fine-
ness of the most probable values (mpv) of the BGM FASt
inferred parameters posterior PDF, θ̄mpv. This triple de-
generacy is reduced to two when using as an evaluator the
mpv of the R distribution, Rmpv, which is independent
of the total number of stars if we introduce the physi-
cal complexity arising from going to upper magnitudes
in the analysis of the MS. Under this assumption, there
is still a degeneracy between the MS and the mpv of the
BGM FASt set of parameters distributions, θ̄mpv, when
performing the analysis of Rmpv.
The best procedure to break this degeneracy is to loop
again the process by fitting the Galactic potential [Robin
et al. 2022] to the inferred BGM FASt parameters and
computing the distance between the new MS and the cat-
alogue data. The repetition of this process should give
us, in the end, the best fit of all the parameters, not only
the ones inferred in BGM FASt. Considering that this
is a long and complex process, we propose an alternative
strategy. In the approximate cross-checking, schemati-
cally shown in Fig. 2, the sets of BGM FASt parameters
θ̄mpv(MS1) and θ̄mpv(MS2) obtained with BGM FASt +
ABC applied to two different MS, are introduced in the
other MS to compute the resultant distances δP and the
R distributions. The idea is that the best MS should give
the smallest distances and the best values of R for any
set of BGM FASt parameters, and the most performing θ̄
should imply obtaining the minimum distances and best
values of R in any MS. However, this statement must be
taken carefully, and the subtleties explained in Appendix
B 1 must be considered when applying the approximate
cross-checking strategy.

IV. THE SET OF EXECUTIONS IN THE
CLOUD

BGM FASt works with two different samples: the
Mother Simulation and the catalogue data. The role of
each one is explained in detail in Subsect. IIA.

A. Input data: Mother Simulations and Gaia DR3

We chose two different MS for this work:

• MS22: it is a dynamically self-consistent MS up to
G < 13 and V < 133 generated following the out-
comes of Robin et al. [2022]. It has been generated
using a non-parametric SFH.

• MS18: it corresponds to the MS of the fiducial case
of Mor et al. [2019]. The ingredients of this MS, in-
cluding a parametric SFH, are based on the results

3 This second constrain in V is due to the fact that BGM Std
works with V magnitudes instead of G.

of Czekaj et al. [2014]. In this case, the full-sky
catalogue of pseudo-stars was generated up to a
limiting magnitude G < 13.

In both MS, the astrometric and photometric magnitudes
of each star were affected by errors using the indications
of Gaia-DPAC consortium for Gaia DR3 (see the Gaia
instrument model webpage).
For the catalogue data, we used the full-sky Gaia DR3 up
to G < 13. Distances were directly computed as the in-
verse of the parallax and the photometric quantities used
are the G magnitude and the observed Bp−Rp colour.
From these ingredients, we set three different configura-
tions that are presented in Tab. I: 1) G12-MS22, which
uses MS22 cut at magnitude G < 12 combined with Gaia
DR3 with the same constrain; 2) GV13-MS22, which is
formed by the same MS22 up to G < 13 and V < 13 and
the analogous Gaia DR3 cut at the same limiting mag-
nitudes4; and 3) G13-MS18, that works with MS18 and
Gaia DR3 up to G < 13.
As can be seen in Tab. I, we observe a non-negligible dis-
agreement between the number of stars in the MS and the
Gaia DR3, with relative discrepancies of 17%, 4% and 7%
for G12-MS22, GV13-MS22 and G13-MS22, respectively.
In addition, these discrepancies are not homogeneously
distributed along the two ranges of magnitudes described
in Subsect. III A for the fitting of the CMD and the LD.
Is at this point where enters BGM FASt, which is thought
to reduce these “bin-to-bin” differences between the MS
and the Gaia DR3.

B. BGM FASt-OCRE executions

The BGM FASt executions presented in this work have
been carried out in a Cloud Environment within the Eu-
ropean OCRE project RainClouds5. The details on the
computational infrastructure, its performance and ac-
countability are explained in Appendix A. We performed
more than 12 executions of BGM FASt + ABC. The most
statistically robust and scientifically useful of them are
presented in Tab. II. As it is explained in Subsect. III C,
the distance threshold for ABC must be determined fol-
lowing a coherent criterion. In this case, we have done
two different kinds of executions. On one hand, we per-
formed one exploratory execution per each MS + Gaia
DR3 configuration with a wide range of threshold dis-
tances to determine a reasonable value for δmin, which
we took as the minimum distance reached by the pseudo-
simulations during the explorations. On the other hand,

4 For the cut in V in the Gaia data we used the equation G −
V = −0.02704 + 0.01424(GBp −GRp)− 0.2156(GBp −GRp)

2 +
0.01426(GBp −GRp)

3 from the Gaia DR3 documentation.
5 In 2020 the Gaia-UB team was awarded a grant from the Euro-
pean Open Clouds for Research Environments initiative (OCRE)
for the execution of several Gaia key scientific cases, BGM FASt
among them.

https://www.cosmos.esa.int/web/gaia/science-performance
https://www.cosmos.esa.int/web/gaia/science-performance
https://gea.esac.esa.int/archive/documentation/GDR3/Data_processing/chap_cu5pho/cu5pho_sec_photSystem/cu5pho_ssec_photRelations.html
https://www.ocre-project.eu/
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TABLE I: In the first row, it is found the total number of stars N⋆ in the Mother Simulation and in
the Gaia DR3 for each of the three configurations. The second and third rows show the absolute and

relative contribution of the two ranges of absolute magnitudes M ′
G to the total N⋆.

G12-MS22 GV13-MS22 G13-MS18

MS Gaia DR3 MS Gaia DR3 MS Gaia DR3

Total N⋆N⋆N⋆ 3071444 3685605 5805759 5552883 6912989 7369632

−1 < M ′
G < 5−1 < M ′
G < 5−1 < M ′
G < 5 2800626 (91%) 3107952 (84%) 5304932 (91%) 4878410 (88%) 5871180 (85%) 6197481 (84%)

5 < M ′
G < 155 < M ′
G < 155 < M ′
G < 15 121996 (4%) 174330 (5%) 323316 (6%) 336912 (6%) 630947 (9%) 484358 (7%)

Notes. Stars within the range −1 < M ′
G < 5 are also limited to have a colour −0.42 < (Bp−Rp) < 2.73 to

avoid the extinction discrepancies explained in Subsect. III A. Also, some stars do not fit any of the magnitude
and colour criteria considered in BGM FASt, which explains why the sums of the percentages do not reach
100% of the total N⋆.

once carefully selected δmin and δmax, we performed an
ABC execution that we take as the one with statistical
robustness.
For the maximum threshold of distance δmax, we took the
value obtained by introducing the parameters of the cor-
responding MS in BGM FASt. The idea behind this way
of proceeding is to consider the MS as the best model up
to date and, consequently, to set it as the upper thresh-
old of distance since the goal of BGM FASt is to improve
the current model.
We consider executions GV13-MS22 and G13-MS18 our
fiducial cases since they are the best BGM FASt perfor-
mances under the theoretical background of ABC. Com-
paring δmin and δlastmax, GV13-MS22 almost reaches the
established minimum distance in its last step while G13-
MS22 gets it in 39 of the 100 planned steps. The evolu-
tion of the minimum, the mean and the maximum dis-
tances are shown in Fig. 3, where we can observe two dif-
ferent regimes: GV13-MS22 develops a clear asymptotic
path while G13-MS18 gets a distance below the minimum
threshold just at the beginning of the asymptotic trend
(see in Appendix B what does it tell us the exploration
of the asymptotic regime).
Apart from the comparison of the two fiducial execu-

tions in terms of their distance evolutionary regimes, we
compare the distance of the set of most probable val-
ues of the inferred parameters θ̄mpv as well as mpv of
the R distribution (both magnitudes are found in Tab.
II). The final distance δGV 13−MS22

mpv = 390929 is larger

than δG13−MS18
mpv = 297898, which is unexpected if we

take into account that G13-MS18 deals with 16% (MS)
to 24% (Gaia DR3) more stars than GV13-MS22. As
we have seen in the Subsect. III B, in some cases an
increasing number of stars gives rise to a better statis-
tical representation of the CMD/LD. In addition, since
we are using a different MS, it exists the possibility that
the combination of MS18 and the derived BGM FASt
parameters θ̄G13−MS18

mpv fit the Gaia data better than the

tandem formed by MS22 and θ̄GV 13−MS22
mpv .

This last hypothesis seems to be confirmed if we take a
look at the distributions of R shown in Fig. 4 (black solid
histogram) and, especially, the resulting mpv of these dis-

FIG. 3: Maximum, minimum and mean distance
evolution over ABC steps for the two fiducial cases

GV13-MS22 (top) and G13-MS18 (bottom).

tributions, which give us valuable information on the re-
semblance between the final PS and Gaia DR3, as well as
a quantification of it. As can be seen in Tab. II, the re-
sulting RG13−MS18

mpv = 0.91+0.43
−0.66 has a value closer to the

ideal R = 1 than RGV 13−MS22
mpv = 0.84+1.88

−0.35. However,
it is true that the dispersion is similar in both cases in
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TABLE II: Most reliable executions performed in this work. The name of each one is formed by the
configuration of the execution (see Subsect. IVA) and the initial letter of its type when it is used
for Exploratory purposes (see Subsect. IV). The only exception is G12-NP-S, which corresponds to
the fiducial execution of Mor et al. [2019]. Glim and Vlim are the limiting magnitudes, “MS” labels
the Mother Simulation used for the given execution (see Subsect. IVA), “Data” corresponds to the
Gaia Data Release, δmax and δmin are the upper and lower limits of the ABC process, δlastmax is the

maximum value of distance in the last ABC step, Nexec
steps/N

plan
steps is the number of ABC steps executed

compared to the planned ones, and δmpv and Rmpv are the distance and the mpv ratio between the
MS and the catalogue of the final set of BGM FASt parameters most probable values (see Sect. III).

The uncertainties of Rmpv correspond to the 16th and 84th percentiles of its distribution.

Name Type GlimGlimGlim VlimVlimVlim MS Data δmaxδmaxδmax δminδminδmin δlastmaxδlastmaxδlastmax Nexec
steps/N

plan
stepsNexec

steps/N
plan
stepsNexec

steps/N
plan
steps δmpvδmpvδmpv RmpvRmpvRmpv

G12NP-S ABC 12 - 2018 Gaia DR2 - - - - 5.6 · 105 -

G12-MS22-E E 12 - 2022 Gaia DR3 500000 150000 275951 100/100 282344 0.85+1.42
−0.37

GV13-MS22-E E 13 13 2022 Gaia DR3 106 300000 383437 100/100 386330 0.85+1.96
−0.35

G13-MS18-E ABC/E 13 - 2018 Gaia DR3 422777 279011 279003 19/100 379455 0.84+0.41
−0.59

GV13-MS22 ABC 13 13 2022 Gaia DR3 600000 382782 382993 100/100 390929 0.84+1.88
−0.35

G13-MS18 ABC 13 - 2018 Gaia DR3 422777 258533 258530 39/100 297898 0.91+0.43
−0.66

Notes. G13-MS18-E appears as an ABC and an exploratory execution at the same time because, while both
δmin and δmax for this execution were determined following the ABC criteria (using for δmin the minimum
value of distance obtained in a first step of execution), G13-MS18-E was later treated as an exploratory
execution to set the value of δmin for G13-MS18.

absolute terms, though it follows opposite trends. This
is reflected in the complementary shapes of the R distri-
butions for GV13-MS22 and G13-MS18 observed in Fig.
4.
Also from Fig. 4, we can say that the R distribution does
not depend on the latitude in any of the fiducial execu-
tions, showing similar trends for stars with 0 < |b| < 10,
10 < |b| < 30 and 30 < |b| < 90. That is an indirect indi-
cation that the contribution of the Galactic components
not considered in this work, especially the thick disc and
the halo, are not affecting so much the distribution of R.
Finally, in order to have a first idea of the reason be-
hind the better results found for G13-MS18–if they are
due to a more reliable MS or a better set of final BGM
FASt parameters than in GV13-MS22 execution–, we ap-
ply the approximate cross-checking strategy proposed in
Subsect. IIID. We take the set of mpv arising from
the GV13-MS22 execution, θ̄mpv(GV 13−MS22), and we
put them inside the G13-MS18 configuration to obtain
the cross-distance δG13−MS18

mpv(GV 13−MS22) and the cross-ratio

RG13−MS18
mpv(GV 13−MS22). Then we do the same process in the

other direction with θ̄mpv(G13−MS18). The matrices re-
sulting from the approximate cross-checking are shown
in Tab. III.
According to the criterion proposed in Subsect. IIID,
the MS with the best performance is the one used
in the configuration G13-MS18. It gives signifi-
cantly lower distances not only for the set of BGM
FASt parameters inferred from applying ABC to it-
self, θ̄mpv(G13−MS18), but also for the ones derived from

GV13-MS22, θ̄mpv(GV 13−MS22). The same situation oc-
curs with R, which appears closer to one when it is com-

TABLE III: Poissonian distance δP and mpv of the
ratio between the MS and the Gaia DR3 Rmpv matrices
arising from the approximate cross-checking strategy

(see Subsect. IIID) using the set of parameters inferred
with the GV13-MS22 (shortened to GV22) and the

G13-MS18 (labelled G18) executions. The uncertainties
of Rmpv correspond to the 16th and 84th percentiles of

its distribution.

θ̄mpv(GV 22)θ̄mpv(GV 22)θ̄mpv(GV 22) θ̄mpv(G18)θ̄mpv(G18)θ̄mpv(G18)

δPδPδP
GV13-MS22 390929 428162

G13-MS18 331657 297898

RRR
GV13-MS22 0.84+1.88

−0.35 0.82+2.17
−0.33

G13-MS18 0.93+0.40
−0.68 0.91+0.43

−0.66

puted applying any of the sets of BGM FASt parameters
to G13-MS18 than when we do the same to GV13-MS22.
We cannot reach a conclusion as strong as for the MS
when we try to choose the best set of inferred parame-
ters from the approximate cross-checking. We do not find
a θ̄mpv that behaves significantly better than the other
one when applying it to both MS. For the distance, each
set of inferred parameters obtain a lower distance than
the other one in its own MS. On the other hand, it is
true that the R is slightly better for θ̄mpv(GV 13−MS22) in
any MS but the difference is not sufficiently significant
to consider this set of parameters the best of this work.
Nonetheless, we cannot give a strong conclusion on the
true resemblance of each MS with the Gaia DR3 or the
fineness of the inferred sets of BGM FASt parameters
without looping again the process by fitting the obtained
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FIG. 4: R distribution obtained from the θ̄mpv given by
the two fiducial executions GV13-MS22 (top) and

G13-MS18 (bottom) taking into account all the stars
(black solid histogram), stars at latitudes 30 < |b| < 90
(red bars), stars with 10 < |b| < 30 (green bars) and the
remaining stars between 0 < |b| < 10 (blue bars). Also,
it is shown Rmpv (vertical black solid line) and its 16th

and 84th percentiles (black dashed lines).

results to the potentials of Robin et al. [2022]. It is cru-
cial to remember that ABC gives an approximate poste-
rior PDF of the parameters. It is a distance estimator
instead of a mechanism to infer the true likelihood be-
tween the catalogue data and the model. Although the
Hess diagram and the luminosity distribution are cho-
sen carefully to be summary statistics capturing all the
essential ingredients of the MS and the Gaia DR3, the
use of other summary statistics such as a spatial repre-
sentation of the Milky Way, as well as different distance
metrics, may give rise to different values of distance not
compatible with the results presented in this section.

V. RESULTS & DISCUSSION

The most probable values of the BGM FASt parame-
ters approximate posterior PDF of the two fiducial exe-
cutions GV13-MS22 and G13-MS18 are found in Tab. IV
and Fig. 66. These values derive from fitting a Gaussian
kernel density estimator to the approximate posterior
PDF of the BGM FASt inferred parameters. The fits per-
formed on the distributions and the cross-dependencies
(degeneracies) for G13-MS18 are shown in Fig. 5.
We do not observe a strong dependence of the final results
on the priors. This conclusion, arising from the analy-
sis of Fig. 6, is confirmed after performing an additional
exploratory execution with a set of priors significantly
modified. On one hand, we take for the SFH an expo-
nential decay with Kψ = 11M⊙pc

−2Gyr−1 and γ = 0.14,
far from the Kψ = 3.3M⊙pc

−2Gyr−1 and γ = 0.09 used
in GV13-MS22 and G13-MS22. On the other hand, we
set the classical Salpeter slope 2.3 for the entire range of
the IMF, displaced from the values α1 = 0.8, α2 = 1.8
and α3 = 4.8 used in our fiducial executions. While the
general trend of both the IMF and the SFH is maintained
in this additional execution, the only magnitude that is
not conserved is the total surface density, which increases
substantially in concordance with the high value of Kψ

in the additional execution. That indicates that BGM
FASt and ABC are able to fit the relative star formation
rate of each period of time but not its absolute value.
Considering so, it is confirmed as a consistent decision
the choice a SFH set of priors for the fiducial executions
that maintains the total surface density of the dynami-
cally self-consistent MS of Robin et al. [2022].

A. The bump in the non-parametric SFH

We find for the SFH a similar behaviour for GV13-
MS22 and G13-MS18. The most prominent result is the
enhancement of the SFR peaking at ∼ 2.5 Gyr ago. This
bump, which is clearly shown in all the executions per-
formed in this work, is in complete agreement with the
star formation burst with a maximum 2-3 Gyr ago re-
ported by Mor et al. [2019]. Sysoliatina and Just [2021]
also discovers two bursts of star formation centered ∼ 0.5
Gyr and ∼ 3 Gyr ago with a relative enhancement of
∼ 30% and ∼ 55%, respectively. Taking into account the
low resolution in the BGM FASt SFH, the observed bump
is also compatible with the most significant one found in
Sysoliatina and Just [2021] ∼ 3 Gyr ago. However, this
burst is not found by Ruiz-Lara et al. [2020], which un-
like us, find three main enhancements of the SFR ∼ 5.7,
∼ 1.9 and ∼ 1.0 Gyr ago with a significance of 3-4σ and
above. The first one also appears in the G13-MS18 exe-

6 Additional plots of the results arising from the executions pre-
sented in this work can be found in bgmfast GitHub.

https://github.com/Marc1704/bgmfast
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FIG. 5: Corner plot of the BGM FASt inferred parameters in the G13-MS18 execution, including the three slopes of
the IMF and 11 parameters for the SFH. At the top of the columns, it is shown the projected approximate posterior
PDF of each parameter with its Gaussian fit, as well as the resulting most probable value and percentiles 16th and
84th, which are in addition marked with solid and dashed lines, respectively. It is also indicated with a dashed line
the median of the distribution. In black at the top right of each plot, it is shown Pearson’s correlation coefficient.

Also in the plots, the parameters adopted by the MS are marked with a magenta cross.

cution around ∼ 5.5 Gyr ago. However, it is displaced to
older ages in GV13-MS22, peaking ∼ 6.5 Gyr ago. In ad-
dition, the error bars in the range of the old thin disc are
too large to consider deriving strong conclusions on this
star formation burst. Other recent studies also observe

that the SFH deviates from the classical unperturbed ex-
ponential decay within the last ∼ 4 Gyr. Bernard [2018]
use Gaia DR1, Tycho-2 and APASS to fit the colour-
magnitude diagram for stars in the Solar neighbourhood
within 250 pc, finding an enhancement of the SFR ∼ 4
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TABLE IV: Parameter name, age (Gyr), prior and
posterior PDF of the 14 inferred parameters, three IMF
slopes (dimensionless) and 11 SFH surface densities

(M⊙pc
−2Gyr−1), and the resulting total surface density

(M⊙pc
−2) of our fiducial cases GV13-MS22 and

G13-MS18.

Parameter Age µpriorµpriorµprior θ̄GV 13−MS22θ̄GV 13−MS22θ̄GV 13−MS22 θ̄G13−MS18θ̄G13−MS18θ̄G13−MS18

α1 all 0.8 −1.88+1.96
−1.81 0.97+0.75

−2.27

α2 all 1.8 2.76+0.09
−0.19 1.74+0.28

−0.33

α3 all 4.8 1.85+0.62
−0.05 2.39+0.60

−0.10

Σ1
⊙ 0-0.15 1.4 0.84+0.73

−0.24 0.56+2.20
−0.22

Σ2
⊙ 0.15-1 1.4 3.23+0.16

−1.22 1.63+0.45
−0.41

Σ3
⊙ 1-2 1.5 6.06+0.48

−2.38 3.34+1.10
−0.71

Σ4
⊙ 2-3 1.7 9.79+0.57

−5.06 5.35+1.50
−1.66

Σ5
⊙ 3-4 1.8 6.74+0.81

−3.31 4.46+1.99
−1.97

Σ6
⊙ 4-5 2.0 6.33+1.48

−3.40 1.86+2.86
−0.80

Σ7
⊙ 5-6 2.2 2.51+2.20

−1.13 2.85+2.40
−1.54

Σ8
⊙ 6-7 2.4 4.52+4.40

−1.98 1.55+2.77
−0.72

Σ9
⊙ 7-8 2.6 3.92+2.34

−2.07 1.99+2.63
−1.07

Σ10
⊙ 8-9 2.9 1.87+2.54

−0.96 2.69+2.77
−1.47

Σ11
⊙ 9-10 3.2 6.44+1.55

−3.71 4.21+2.26
−2.32

ΣT⊙ all 21.7 51.05 29.77

Notes. The prior PDF for both fiducial cases are the same:
Gaussians centred at µS with variance σS = 2 (with the
corresponding units). These PDF of the SFH are truncated
at zero. The µS values of the IMF are exactly the ones used
in the original MS22. The µS of the 11 Σj⊙ are obtained

from considering an exponential SFH of the form Kψ · e−γτ ,
with Kψ = 3.3M⊙pc

−2Gyr−1 the normalization constant,
γ = 0.09 Gyr−1 the inverse of the characteristic timescale,
and τ the time.

Gyr ago followed by a decrease in the past 2-3 Gyr. Sim-
ilar results are found in Cignoni et al. [2007], where they
report a local maximum of the SFH ∼ 3 Gyr ago that
they attribute to the accretion of a satellite galaxy.
In agreement with the results of Mor et al. [2019], Sysoli-
atina and Just [2021], we recover for G13-MS18 a general
trend compatible with an exponential decreasing SFH
perturbed by a Gaussian centred at ∼ 2.5 Gyr ago. This
tendency is more difficult to observe in GV13-MS22 ex-
ecution. Nonetheless, what remains fully inconsistent
between different works is the total (baryonic) surface
density of the thin disc, which is completely related to
the dynamical consistency of the models. Even in this
case, we obtain two results for GV13-MS22 and G13-
MS18 which are clearly incompatible. For the former, the
surface mass density grows up to ∼ 50M⊙pc

−2, while for

the latter it stays much lower and similar to the priors,
giving a value of ∼ 30M⊙pc

−2. It is difficult to compare
these values with the literature, since not always they are
explicitly presented. For instance, Ruiz-Lara et al. [2020]
present a SFH normalized or in arbitrary units. We can
compare our result with the total surface density of the
thin disc presented in Sysoliatina and Just [2021], where
it is found to have a value ∼ 29M⊙pc

−2, compatible with
the results of G13-MS18.

B. The consistency of the slopes of the IMF

For the IMF, the parameter that presents the most dis-
cordance value with respect to the literature is the first
slope found for GV13-MS22, α1 = −1.88+1.96

−1.81. Kroupa
[2008], for instance, reports an exponent α1 = 1.3 ± 0.3
for stars with masses between 0.08M⊙ < M < 0.5M⊙,
very similar to the value of α1 = 1.35 adopted in Haghi
et al. [2020].
The reason that explains that very negative value is the
lack of low-mass stars in the MS of this configuration,
with only 94 stars falling inside the mass range of α1

compared to the 4310763 (74%) and 1494902 (26%) used
to fit α2 and α3, respectively. The residual number of
low-mass stars in the MS of GV13-MS22 is due to the
fact that it is cut at M ′

V = 7, which can be observed
in Fig. 7. This anomaly has negligible consequences in
the inference of all the parameters except α1, for which
this situation is catastrophic. If we assume that we need
to reach at least M ′

G = 10 to have a significant popula-
tion of low-mass stars, we can compare the 94 stars with
M < 0.53M⊙ in the MS with the 404 stars withM ′

G > 10
in the Gaia sample of GV13-MS22. Therefore, to reduce
the distance between the population of low-mass stars,
highly localized in the LD, BGM FASt has to give very
high weights to the few stars within the α1 range of the
MS. Considering that the denominator of Eq. (2) is con-
stant, the only way to increase the value of the weights
is by making the IMF of those stars grow. Since the
IMF goes as ξ(M) ∝ m−γ , negative values of γ will cor-
respond to positive exponents and, therefore, increasing
values of the IMF. That is what explains why in the case
of GV13-MS22 the best combination of parameters is ob-
tained with a very negative value of α1.
On the other hand, a slightly different situation hap-
pens with G13-MS18. In this case, we have a value of
α1 = 0.97+0.75

−2.27 that shows a very wide distribution. The
MS of the configuration G13-MS18 is cut at M ′

V = 14.6,
having a good correspondence for the number of stars up
to M ′

G = 10 with the Gaia DR3, with 2894 and 2354
stars, respectively. Note that in both cases the sample
of stars within the first range of masses represents less
than 1% of the total amount of stars. What happens,
in this case, is that the sample is insufficient to apply a
statistic method such as ABC, and we obtain a very wide
distribution of α1. Therefore, not in this case either we
can consider the inferred α1 a good indicator of its real
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FIG. 6: In blue, it is shown the SFH (top) and the IMF (bottom) inferred with BGM FASt for the two fiducial cases
GV13-MS22 (left) and G13-MS18 (right). In red and green are marked the values adopted for the priors and the

MS, respectively. The BGM FASt most probable value of α1 for the execution GV13-MS22 falls below the
reasonable limits, taking a value of α1 = −1.88+1.96

−1.81. The same situation happens to the prior of α3 (which coincides
with the value of α3 in the MS in the GV13-MS22 configuration), which has a value of α3 = 4.8.

value.
Considering that we cannot take as valid α1 in any of the
presented cases, one may think that its incorrect fitting
can affect the determination of the rest of the parame-
ters. Actually, that is not what happens for the same
reason explained above. The activity of α1 in Eq. (2) is
limited to those stars with masses between 0.09−0.5M⊙.
Since we have very few stars within this range, the con-
sequences of a catastrophic α1 are completely negligible.
Besides, we performed an additional execution without
fitting α1 and we checked that the results do not change
within the statistical fluctuations.
Regarding α2 and α3, we observe that both magnitudes
leave their original priors to reach much lower and com-
patible values with the literature [Mor et al. 2019, Dick-
son et al. 2023, Kroupa 2008, Haghi et al. 2020], which is
a positive sign that indicates a correct operation of BGM

FASt and ABC. We find the values α2 = 2.76+0.09
−0.19 and

α2 = 1.74+0.28
−0.33 for GV13-MS22 and G13-MS18, respec-

tively. In the literature, the usual value of the second
slope of the IMF is close to the classical Salpeter slope,
α2 = 2.3. In Kroupa [2008], the second slope of a two-
part power-law IMF is set at α2 = 2.3 ± 0.5 for stars
within a wide range of masses 0.5M⊙ < M < 150M⊙. A
similar value is found in Mor et al. [2019], α2 ≈ 2, in this
case within a much narrower range comprising masses
between 0.5M⊙ and 1.53M⊙. Considering so, the α2 de-
rived in this work is relatively far from the typical one in
all the cases explored. Even though, the value of α2 in-
ferred from the G13-MS18 execution is more compatible
with the literature than that obtained from G13-MS22.
On the other hand, the values of the third slope of
the IMF derived from GV13-MS22 and G13-MS18 are
α3 = 1.85+0.62

−0.05 and α3 = 2.39+0.60
−0.10, respectively. Com-
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paring them with the literature, we find that the one ob-
tained with G13-MS18 fits considerably better the results
reported in Dickson et al. [2023], Kroupa [2008], Haghi
et al. [2020] than the α3 from GV13-MS22. Especially
the value derived in Dickson et al. [2023] for stars with
M > 1M⊙, α3 = 2.37+0.48

−0.25, is in complete agreement
with the α3 from the G13-MS18 execution. On the other
hand, all the explored values of α3 both in this work and
the aforementioned literature are far from the α2 ≈ 1.3
given in Mor et al. [2019].

C. Hess diagrams comparison

Finally, we analyze the physical implications of the re-
sults inferred from the fiducial executions with the sup-
port of the Hess diagrams shown in Fig. 7. The first
thing that draws attention are the three highlighted lines
that appear in the third, four and fifth columns of the
G13-MS18 execution (bottom in Fig. 7). To understand
them, it must be taken into account that the stars be-
low the solid black line in BGM FASt are not fitted in
the Hess diagrams but in the luminosity distribution (see
Subsect. III A). Therefore, the distance computed for the
optimization of the parameters is actually the one we ob-
tain from integrating the distances shown in the fourth
column over all the BpRp range of colours. From this
point of view, and taking into account that the two lower
lines present opposite colours in the fourth column, it is
derived that actually the total distance per bin of the LD
is close to zero, and the two lines that are shown in Fig.
7 represent the compensation between the overcontribu-
tion of the PS (lower line, in green) and the Gaia DR3
(mid line, in red).
However, they still remain the questions of why these
lines appear so highlighted and what is the origin of the
third line in the upper part. These two questions have a
physical origin and can be related to themselves. We pro-
pose the effect of two different possible problems in the
model. First, we could have a problem with the metal-
licity of the stars. Variations in the metallicity generate
a variety of almost parallel paths in the main sequence
of the Hess diagram. This problem can be even more im-
portant for stars from the thick disc, where the content in
metals is much different than that of the thin disc. The
fact that in the current implementation of BGM FASt,
we do not fit the stars of the thick disc, may give rise
to distortions similar to the ones observed. The second
possible origin of these lines is the fact that BGM Std
does not contemplate stars in the pre-main sequence in
the generation of the MS. That would explain the lack of
stars in the PS far from the ZAMS.
Finally, it is important to note that the presence of these
three lines is much weaker for GV13-MS22 execution (top
of Fig. 7). This can be due to two different reasons: ei-
ther the MS of the configuration GV13-MS22 performs
a better simulation of the low-mass regions of the Hess
diagram, or the difference in the number of stars be-

tween the samples of GV13-MS22 and G13-MS18 (see
Subsect. IVA) implies a much lower number of stars in
the low-mass region for the former than for the latter,
diminishing the distances in this region. This last idea
makes sense if we take into account the values presented
in Tab. I, where we find almost twice as many stars
within the range 5 < M ′

G < 15 in the MS of the con-
figuration G13-MS18 (630947 stars) than in the MS of
GV13-MS22 (323316 stars).
Apart from the three lines in the low-mass region of the
Hess diagram, we also find some other conflicting zones
in both executions. For instance, the turn-off and the
giant branch are not well defined, especially in high lat-
itudes (top rows in Fig. 7). We find in these regions a
lack of stars in the PS, which can be due to the evolu-
tionary tracks used in BGM Std. Another option is that
this discordance comes from the stars of the thick disc.
This possibility is compatible with the fact that these
conflicting regions seem to be more spread in G13-MS18
than in GV13-MS22, which corresponds to the evidence
that in the MS of the G13-MS18 configuration, the stars
located at the thick disc represent 16% of the total num-
ber of stars (1138473 stars), while in the case of the MS
from GV13-MS22, the percentage is reduced to an 11%
(635214 stars).
In addition, the GV13-MS22 execution presents an ex-

cess of stars in the high-mass regime of the main se-
quence. This region is probably the most affected by the
possible variations in the inferred parameters of BGM
FASt, especially the value of α3. In Subsect. VB we
found a lower value of the third slope of the IMF for
GV13-MS22 than for G13-MS18, corresponding to a top-
light IMF in the high-mass range [Kroupa and Jerabkova
2021] that can cause an overproduction of high-mass
stars. In this case, the better value of α3 obtained in
G13-MS18 may be responsible for the better performance
of this execution with respect to GV13-MS22 in this re-
gion.
On the other hand, we observe a high discordance be-
tween the PS and the Gaia DR3 in the regions with the
most reddened stars. The problems with the extinction
map in BGM Std are not still well-resolved. Actually,
this matter is so complex that studies on the performance
of BGM FASt using different extinction maps were pre-
sented in Mor et al. [2019, 2018]. That is the reason
why, as it is explained in Subsect. IIIA, we only con-
sider stars with −0.42 < (Bp − Rp) < 2.73 in the range
−1 < M ′

G < 5, to avoid problems while fitting highly-
reddened stars. Even though, the majority of them are
still in the sample and may give rise to some distortions
in the fitting process. Nevertheless, as can be seen in the
third column of Fig. 7, the influence of these stars in the
final total distance is negligible, since there are just a few
of them.
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FIG. 7: Hess diagrams for the three considered latitude ranges (30 < |b| < 90, 10 < |b| < 30, 0 < |b| < 10 represented
in top, mid and bottom rows, respectively) obtained from the inferred parameters in the fiducial executions

GV13-MS22 (top) and G13-MS18 (bottom). From the left-most column to the right-most columns, they are shown
the Hess diagrams of the Gaia DR3, the BGM FASt PS, the metric distance per pixel (each one of the elements of
the summation of Eq. (III B)), the absolute difference in the number of stars and the ratio R between the PS and

the Gaia DR3. In addition, it is shown with a black solid line the separation between the stars for which the
distance is computed in a binned Hess diagram (−1 < M ′

G < 5) and those for which we use the luminosity
distribution (5 < M ′

G < 15).

VI. CONCLUSIONS & FUTURE WORK

In this work, we have implemented, executed and ana-
lyzed in a Cloud Computing Environment more than 12
full-sky Besançon Galaxy Model Fast Approximate Simu-
lations [Mor et al. 2019] for the first time up to magnitude
G < 13, consuming > 5 · 105 CPU hours of executions.
We have used the Approximate Bayesian Computation,
two different Mother Simulations generated with BGM
Std [Robin et al. 2022, Czekaj et al. 2014] and the Gaia
DR3 [Gaia Collaboration et al. 2022] to infer the star for-

mation history and the initial mass function of the thin
disc in the Solar neighbourhood.
Our results, from all the executions performed with dif-
ferent priors and Mother Simulations, definitively unveil
the existence of a statistically significant burst of star
formation peaking ∼ 2.5 Gyr ago. These results are com-
patible with the SFH enhancements reported in the last
years by several authors using different techniques [Mor
et al. 2019, Sysoliatina and Just 2021]. For the third slope
of the IMF, we recover a value of α3 = 2.39+0.60

−0.10 close
to the classical Salpeter values and in complete agree-
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ment with Dickson et al. [2023], Kroupa [2008], Haghi
et al. [2020]. Although statistically robust, the values
obtained for the α2 slope at intermediate masses from
our two fiducial executions remain unclear. We have ob-
tained α2 ∈ [1.7, 2.8] for the range of masses between
0.5 − 1.53M⊙. More work is required to understand
these discrepancies. We confirm, as expected, that for
the low-mass range of the IMF (M < 0.5M⊙) the slope
α1 remains unreachable when using a sample limited to
G < 13, since faint sources are needed to characterize the
contribution of the low-mass main sequence stars.
Our results report a significant variation in the total sur-
face stellar density in the Solar neighbourhood for the
two fiducial and most reliable executions. As known,
this quantity is crucial for the estimation of the local
dark matter in the Solar neighbourhood, so further work
with BGM Std and BGM FASt is required to constrain
this value.
Last, as a product of the present master thesis, we have
developed, implemented and tested new tools to ana-
lyze the statistical performance of the BGM FASt out-
puts. We have provided a new framework to characterize
and quantify through the Poissonian distance the contri-
bution of the Mother Simulation ingredients, the BGM
FASt inferred parameters and the limiting magnitude of
the working sample. Using these tools we have identi-
fied some of the key tasks that needed to be upgraded in
future BGM FASt and ABC executions. Among others:

• To increase the limiting magnitude to explore the
first range of the IMF. At this point, we will have to
consider the contribution of the stars from the thick
disc, incorporating the corresponding parameters
in the inference process.

• To execute an iterative process to fix the total
surface density required for the dynamical self-
consistency of the stellar system at a Galactic ra-
dius between 5-11 kpc.

• To modify the summary statistics and the distance
metric to obtain a better characterization of the re-
semblance between the pseudo-simulation and the
catalogue data.

As a first step, to confirm the results obtained in this
work it will be crucial to loop again the process by fitting
the outcomes of this work (IMF and SFH) to the strategy
developed by Robin et al. [2022] to fit the Galactic po-
tential and obtain a dynamically self-consistent solution.
Finally, it is important to mention that the present work
has allowed the Gaia-UB team to deeply evaluate the
numerous benefits and caveats of the execution of highly
demanding computational simulations for the Scientific
Exploitation of Gaia Data in a Cloud Computing Envi-
ronment. Our work corroborates the impressive capabil-
ities of the SPARK unified analytics engine for the use of
large-scale data processing tasks as the ones required by
BGM FASt. These tasks are mandatory to provide new
insights into fundamental and key pending questions in
Galactic Astrophysics such as the derivation of the initial
mass function and/or the unveiling of the star formation
history of the Galactic disc in the Solar neighbourhood.
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Appendix A: Infrastructure, Performance &
Accountability of the OCRE Computational Cloud

1. Infrastructure

We ran the BGM FASt Galaxy Model in Spark clus-
ters (Dataproc) with a total maximum number of three
clusters. For instance, in June 5th we had the following
infrastructure:

• 784 cores (520 Intel Cascade Lake and 264 Intel
Haswell).

• 2.9 TB RAM.

• 7.6 TB disc (4 TB in SSD).

Each cluster was created as follows:

• 1 Master node, with 4 vCPUs, 16GB of RAM and
500GB of disc storage.

• 4 Worker nodes, each with 64 vCPUs, 240GB of
RAM and 500GB of disc storage.

• A shared Google Cloud Storage disc.

The first cluster used Intel Haswell CPUs and HDD disc
storage. When we wanted to perform different runs si-
multaneously, we thought we could also try to improve
the new clusters’ performance by using a newer proces-
sor architecture and solid-state drives. That is why we
moved to use Intel Cascade Lake CPUs and SSD discs
for the second and third clusters. The shared disc stored
the data inputs between the different machines and their
computation logs.

2. Performance

We use the following command line to execute the
BGM FASt code in the Cloud Environment:

/opt/conda/anaconda/bin/spark-submit
--num-executors 31 --executor-cores 8

master bgmfast.py.

We opt for this command line after considering the fol-
lowing ideas. The maximum number of executors we
can use per process is the total number of CPUs of the
cluster, subtracting one for the master node and one for
each cluster for the performing of the internal processes
of each machine. Taking into account that we have a
maximum of 256 CPUs, this leaves us with 251 available
CPUs that we can use to assign executors to run BGM
FASt. To be able to run each pseudo-simulation quickly,
it is necessary to assign more than one CPU to each ex-
ecutor. In this way, each calculation has more resources
and the time per PS is shortened. We tested by expand-
ing the number of CPUs assigned to each executor until
8 CPUs/executor, the point at which the time of each PS
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no longer decreased and remained at 1s. Using 8 CPUs
per executor lowers the number of available executors
which becomes 251/8 = 31.37, which we round down to
31 executors.

3. Accountability

Since the time we adequately labelled the Google
Cloud resources with the ”BGMFast” tag (around 9
March 2023 and until 11 June 2023), we have spent a
total of 22.6k€ in the executions. Resource consumption
before this date was very small, just with initial setup
and configuration activities. The day with the highest
cost was 4 June (1023€), when we had the three clusters
up and running plus a testing notebook. The highest
costs come from N1 and N2 computing cores (7.77k€ and
3.99k€, respectively), the licensing fee for Google Cloud
Dataproc (4k€), the N1 and N2 RAM (3.9k€ and 2.1k€,
respectively), and the storage (462€ standard plus 274€
SSD). Note that the second cluster was added at a quite
late stage (23-May), and the third one just during the
final days (2-June). The daily costs of the Cloud infras-
tructure are shown in Fig. 8.

Appendix B: Clues for the proper execution of
BGM FASt and ABC

1. Warnings and suggestions for the application of
the approximate cross-checking strategy (from

Subsect. IIID)

1. The parameters used to generate the BGM Std that
are not taken into account in BGM FASt and those
derived in BGM FASt are physically and compu-
tationally bounded. That means that introducing
BGM FASt parameters obtained with different con-
figurations of the MS may give rise to non-sense
combinations if we analyze the whole set of ingre-
dients. That can be given from the statistical point
of view (the resulting distance is much larger) or
from the physical point of view (the combination
of parameters is physically non-sense).

2. It is highly recommended to compare MS up to
the same limiting magnitude. The reason is that,
as it is commented in Subsect. III B, the increas-
ing of the limiting magnitude implies both a higher
scale factor N⋆ and the involvement of more com-
plex physics. The former can be surpassed using
R instead of δP as an evaluator, but the latter is
intrinsic to the sample and cannot be avoided (ex-
cept, for instance, if we consider for the comparison
only the less conflicting regions, a possibility that
is not explored in this work).

3. It is also recommended to start in both cases from
the same set of priors for the BGM FASt parame-

ters. This is the least important matter, since the
resulting θ̄mpv is not dependent on the selection of
the initial priors if the distance thresholds and the
number of steps are taken correctly (see Sect. V).
However, it gives consistency to the results.

4. In some cases, it is possible that an overfit of the
MS by BGM FASt gives rise to a set of BGM FASt
parameters that only works well in the MS that
generated them. This can also happen if we work
with a problematic MS which is not a good approx-
imation to the observed data. To detect this kind
of problem, it is always important to analyze and
compare the CMD and LD of the catalogue data
and the PS resulting from θ̄mpv, in order to find
out problematic regions.

2. Definition and application of the new concepts
developed in this work

• The role of the intrinsic physical distance
(from Subsect. III B): when going from G < 12
to G < 13/V < 13 (see Subsect. IVB), we increase
the number of stars in the MS and Gaia a factor 1.9
and 1.5, respectively (see Tab. I). However, if we
compare the distances we obtain injecting the same
set of BGM FASt parameters θ̄MS (the set of pa-
rameters corresponding to the MS) in both config-
urations, we find an increasing factor of 1.4, which
is lower than the expected 1.9 and 1.5 if we only
take into account the scale factor of the number of
stars, N⋆. That demonstrates that we must take
into account the role of the intrinsic physical dis-
tance when comparing Poisson distances obtained
up to different limiting magnitudes.

• The meaning of the asymptotic regime (from
Subsect. IVB): from Fig. 3 we observe
that GV13-MS22 explores in detail the asymptotic
regime before ending its process while G13-MS18
reaches the minimum threshold of distance before
completely entering into this trend. This result
is indicative that δmin is better chosen for GV13-
MS22 than for G13-MS18, which is in agreement
with the fact that we perform for GV13-MS22 an
exploratory execution to define its lower threshold
of distance while in the case of G13-MS18, we use
the results of G13-MS18-E, that departs from a
much narrower range [δmax, δmin].

Appendix C: BGM FASt Python package

We show in Fig. 9 and Fig. 10 the flux diagrams
of the old and new bgmfast Python package. In the
scheme of the old version (Fig. 9), shown in red are the
functions that are no longer needed due to the fact that
in the new execution of BGM FASt, we do not fit the
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FIG. 8: Daily costs of BGM FASt Cloud Computing. N1 refers to the first cluster, and N2 includes the second and
third. The columns indicate the name and type of service, the resource usage and their cost as well as the applied

discounts.

dynamical parameters of the model and we consider a
non-parametric SFH for the MS. In both figures, it is
marked with rectangles the part of the code where the
parameters are set (blue), where it reads the catalogue
data (green), and where it generates the PS and loops
the process with ABC (grey).
Finally, in the new version of the package (Fig. 10) it is
also shown at the bottom-right part of the scheme a box
containing the additional scripts developed in the current
work:

• Gaia instrument model filter.py, that includes

the error models applied to the MS (see Sect. IV).

• set inputs for bgmfast.py, which performs the
cut in G and V magnitudes and displays
the columns of the data as expected by
master bgmfast.py.

• analysis tools.py, comprising the statistical
tools developed in Sect. III as well as the possi-
bility of quickly building plots for the analysis of
the results.
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bgmfast_package_tester.pyparameters.py bgmfast_simulation_class.py

Parameters
definition

[P1]

Import parameters: 68 parameters
[B1.1]

Define variable: RSVFOR_ms
[B1.2]

Define variables: K1_ms, K2_ms, K2_ms
[B1.3]

Continuity_Coeficients_func
[F3]

Define variable: K_sfh_ms 
[B1.4]

Ksfh_int_func
[F4]

Define variable: sfh_ms 
[B1.5]

int_sfh
[F5]

Create a bgmfast_simulation class object:
bgmfast_sim

[B2]

bgmfast_simulation
[C1]

bgmfast_simulation_class.py

RSV2020
[F1]

auxiliary_functions.py

rhodisc0706
[F2]

auxiliary_functions.py

Open spark session: sc, spark
[B3]

bgmfast_simulation.open_spark_session
[C1.1]

Set Parameters
[B4]

bgmfast_simulation.set_acc_parameters
[C1.2]

bgmfast_simulation.set_binning_parameters
[C1.3]

bgmfast_simulation.set_general_parameters
[C1.4]

bgmfast_simulation.set_rhodisc0706_parameters
[C1.5]

bgmfast_simulation.set_ps_parameters
[C1.7]

bgmfast_simulation.set_constraints_parameters
[C1.8]

Read catalog
[B5.1]

bgmfast_simulation.read_catalog
[C1.9]

Generate catalog color-magnitude
diagrams (CMDs): catalog_data

[B5.2]

bgmfast_simulation.generate_catalog_cmd
[C1.11]

Read the Mother Simulation
[B6]

bgmfast_simulation.read_ms
[C1.13]

Define free parameters
according to a given distribution: param

[B7.1]

Run the Pseudo-Simulation:
simulation_data

[B7.2]

bgmfast_simulation.run_simulation
[C1.14]

Compute distance between PS and
catalog
[B7.3]

dist_metric_gdaf2
[F17]

If computed distance > threshold If computed distance < threshold

Discard param Save param, distance and weight

One step of ABC process
 (computing one Pseudo-Simulation)

pes_catalog
[C2]

binning_4D_Mvarpi
[F7]

bgmfast_simulation.accumulators_init
[C1.10]

Continuity_Coeficients_func
[F2]

f_toint1_func3_NONP
[F8]

Omega_func
[F10]

bin_prob_func
[F11]

int_prob_M_m_func
[F13]

Omega_func_aux2
[F9]

bgmfast_simulation.accumulators_init
[C1.10]

bgmfast_simulation.return_cmd
[C1.12]

prob_M_m_func
[F12]

wpes_func
[C3]

bgmfast_simulation.return_cmd
[C1.12]

binning_4D_Mvarpi
[F7]

Simplified_Gi_Primal_func_NONP
[F14]

Simplified_Gi_Primal_func
[F16]

discrhoSeptember
[F15]

sfh_func
[F6]

rhodisc0706
[F2]

rhodisc0706
[F2]

RSV2020
[F1]

discrhoSeptember
[F15]

bgmfast_simulation.set_ms_parameters
[C1.6]

FIG. 9: Flux diagram of the old version of the BGM FASt Python package.
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master_bgmfast.py bgmfast_simulation_class.py

Continuity_Coeficients_func
[F1]

Create a bgmfast_simulation class object:
bgmfast_sim

[B1]

bgmfast_simulation
[C1]

bgmfast_simulation_class.py auxiliary_functions.py auxiliary_functions.py

Open spark session: sc, spark
[B2]

bgmfast_simulation.open_spark_session
[C1.1]

Set parameters
[B3]

bgmfast_simulation.set_acc_parameters
[C1.2]

bgmfast_simulation.set_binning_parameters
[C1.3]

bgmfast_simulation.set_general_parameters
[C1.4]

bgmfast_simulation.set_constraints_parameters
[C1.7]

bgmfast_simulation.set_ps_parameters
[C1.6]

bgmfast_simulation.set_ms_parameters
[C1.5]

Read catalog
[B4.1]

bgmfast_simulation.read_catalog
[C1.8]

Generate catalog color-magnitude
diagrams (CMDs): catalog_data

[B4.2]

bgmfast_simulation.generate_catalog_cmd
[C1.10]

Read the Mother Simulation
[B5]

bgmfast_simulation.read_ms
[C1.12]

Define free parameters
according to a given distribution: param

[B6.1]

Run the Pseudo-Simulation (PS):
simulation_data

[B6.2]

bgmfast_simulation.run_simulation
[C1.13]

Compute distance between PS and catalog
[B6.3]

dist_metric_gdaf2
[F11]

If computed distance > threshold If computed distance < threshold

Discard param Save param, distance and weight

One step of ABC process
 (computing one Pseudo-Simulation)

pes_catalog
[C2]

binning_4D_Mvarpi
[F9]

bgmfast_simulation.accumulators_init
[C1.9]

Continuity_Coeficients_func
[F1]

bgmfast_simulation.accumulators_init
[C1.9]

bgmfast_simulation.return_cmd
[C1.11]

wpes_func
[C3]

bgmfast_simulation.return_cmd
[C1.11]

binning_4D_Mvarpi
[F9]

Simplified_Gi_Primal_func_NONP
[F10]

bin_nor_func
[F2]

f_toint1_func3_NONP
[F3]

Omega_func
[F5]

bin_prob_func
[F6]

int_prob_M_m_func
[F7]

Omega_func_aux2
[F4]

prob_M_m_func
[F8]

f_toint1_func3_NONP
[F3]

Omega_func
[F5]

bin_prob_func
[F6]

int_prob_M_m_func
[F7]

Omega_func_aux2
[F4]

prob_M_m_func
[F8]

bin_nor_func
[F2]

Gaia_instrument_model_filter.py
Imitate Gaia instrumental effects in the

Mother Simulation data

set_inputs_for_bgmfast.py
Compute absolute magnitude and prepare

data format for BGMFASt

analysis_tools.py
Perform statistic analysis of the results

and build several plots

OTHER SCRIPTS WITHIN THE
BGMFAST PYTHON MODULE

parameters.py

Definition of 58 parameters
imported in [C1.2] to [C1.7]

FIG. 10: Flux diagram of the new version of the BGM FASt Python package.
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