Modelling the evolution of the Milky Way from Gaia DR3

A.C. Robin, M. del Alcázar, C. Figueras, O. Bienaymé

Elements to constrain the evolution of the Milky Way

- Ages not obvious to determine, stellar model dependent, large uncertainties and for very limited samples => more an uncalibrated scale than real ages
- Age indicators : even less accurate but are available for much larger samples, and are interesting to indirectly follow the evolution (statistically)
- chemical abundances
- dynamics
- spectral types / stellar evolution stages
- The combination of those gives more constraints on Galactic evolution

- Beatrice Tinsley : simple characterisation of galaxy evolution : function of star masses and time
- Assume independent
- Initial Mass Function (IMF) and Star Formation History (SFR), basic functions to model galaxy evolution
- Population synthesis : assumes IMF and SFH, produce simulations and compare with data (statistics)

Ilustración de Beatrice Tinsley por Pelopantón

Population synthesis in the Besançon Galaxy Model (BGM)

Simulation of stars, with their characteristics and their sky distribution

** *

ρ(x,y,z) : density laws constrained by Dynamics (Bienaymé et al, 1987, 2015, 2018)

Simulated catalogue: photometry, astrometry (pm, Vlos, parallax), Teff, log, [M/H], [alpha/M]...

STARS GENERATED JUGH IMF, SFR AND EVOLUTIONARY TRACKS

(Robin & Crézé, 1986, Haywood et al, 1996, Czekaj et al, 2014, Lagarde et al 2017, 2018, Mor et al 2018, 2019, etc.)

Population synthesis in the Besançon Galaxy Model (BGM)

Simulation of stars, with their characteristics and their sky distribution

** *

ρ(x,y,z) : density laws constrained by Dynamics (Bienaymé et al, 1987, 2015, 2018)

Simulated catalogue: photometry, astrometry (pm, Vlos, parallax), Teff, log, [M/H], [alpha/M]...

STARS GENERATED JUGH IMF, SFR AND EVOLUTIONARY TRACKS

(Robin & Crézé, 1986, Haywood et al, 1996, Czekaj et al, 2014, Lagarde et al 2017, 2018, Mor et al 2018, 2019, etc.)

Dynamics and constraints on IMF and SFH

Del Alcázar i Julià (2023) Master thesis, see poster

Bienaymé, Robin & Crézé, 1987 : Boltzmann & Poisson Eq. => density laws for stars (age) Only at R=R₀ and vertically

Bienaymé et al 2015 : next step

- Approximate the potential in the BGM by a Stäckel potential
- => To compute 3rd integral of the motion •
- positions Rgal, Zgal
- Assume stationarity

Robin, Bienaymé et al 2022 : Constrained with Gaia DR3

=> To derive the density and velocity distribution self-consistently at different

ITERATIVE PROCESS

GAIA F(PARALLAXE) VTL, VTB QUANTILES

Simulations

fit model with MCMC with a fixed potential, with approximate changes on DFs

MCMC SOLUTION

Exact Potential Constrained By Vcirc

kpc data (continuous grey line), R > 9 kpc model (dashed cyan line).

Magenta: R<8 kpc Cyan: R>9 kpc

Quality of the fit

Next step

- Dynamics on fixed SFH and IMF (2022).
- Mor et al 2019. BGMFASt => new SFH and IMF

Preliminary results : See del Alcázar i Julià (2023) Master thesis and poster

• 1st test: redo BGMFASt runs with new dyn. self-consistent mother simulation.

Loop to get a unique solution

The Besançon Galaxy Model Fast Approximate Simulations

R. Mor et al., A&A 620, A79 (2018).

Preliminary results with data G<13:

- Non parametric SFH for the thin disc: confirm the burst at 2.5 Gyr as in Mor+2019
- IMF similar to previous studies
- No constraints on low mass IMF

Results. Hess diagrams comparison

$$\delta_P(\mathcal{S}_{obs}, \mathcal{S}_{sim}) = \left| \sum_{n=1}^{N_{bins}} q_n [1 - R_n + R_n] \right|$$
$$R = \frac{f_n}{q_n}, f_n = \#_{\star}^{sim} \text{ and } q_n = \#_{\star}^{sim}$$

Results. Hess diagrams comparison

$$\delta_P(\mathcal{S}_{obs}, \mathcal{S}_{sim}) = \left| \sum_{n=1}^{\infty} q_n [1 - R_n + \frac{f_n}{q_n}] \right|_{n=1} = \frac{f_n}{q_n}, f_n = \#^{sim}_{\star} \text{ and } q_n = \#^{sim}_{\star}$$

=> Better fit to high mass regions and giant branch Still some progress to do for :

- the position of the giant branch (stellar models atmosphere?)
- the 3D extinction map

Fit result

=> Better fit to high mass regions and giant branch Still some progress to do for :

- the position of the giant branch (stellar models atmosphere?)
- the 3D extinction map

Fit result

=> Better fit to high mass regions and giant branch Still some progress to do for :

- the position of the giant branch (stellar models atmosphere?)
- the 3D extinction map

Fit result

=> Better fit to high mass regions and giant branch Still some progress to do for :

- the position of the giant branch (stellar models atmosphere?)
- the 3D extinction map

Fit result

=> Better fit to high mass regions and giant branch Still some progress to do for :

- the position of the giant branch (stellar models atmosphere?)
- the 3D extinction map

Fit result

Future steps

• Loop between dynamical fitting and SFH/IMF fitting, or create a combined tool to fit IMF/SFH and dynamics all together (ABC or MCMC)

- Need to add further observational constraints to BGMFASt:
 - \bullet Constraints from parallax and velocity dispersion distributions (also V_{los})
 - ◆ Gaia data still used to G<13 (full sky). Deeper data can be added (on portions of sky)
- Heavy computing facilities needed : Cloud and HPC most useful

Hoping that a single model can fit the whole observable distribution... or increase its complexity, adding more science in it

Acknowledgments to MW-Gaia COST Action

Thanks for your attention