Structure, kinematics and time evolution of the Galactic Warp revealed by Classical Cepheids

The Milky Way Revealed by Gaia: The Next Frontier

Mauro Cabrera-Gadea. Universidad de la República. Uruguay.
Cecilia Mateu, Pau Ramos, Mercè Romero-Gómez, Teresa Antoja and Luis Aguilar

Warps:

Between 40-50\% of observed spiral galaxies present a warped disc
(e.g. Sanchez-Saavedra et al. 1990,

Reshetnikov \& Combes 1998)

NRAO/AUI/NSF

Warps:

Between 40-50\% of observed spiral galaxies present a warped disc (e.g. Sanchez-Saavedra et al. 1990, Reshetnikov \& Combes 1998)

NRAO/AUI/NSF

In the MW: discovered in HI (Burke 1957) later found in the stellar component (Freudenreich et al. 1994). Recent studies with Cepheids have show a clear warped disc (e.g. D. Skowron et al. 2019a, Chen et al. 2019)

What's new in this work?

Fourier decomposition of the mean vertical high Z and mean vertical velocity Vz taking into account:

- The warp lopsidedness
- No assumptions on the radial dependency of the parameters of the warp.

We provide a new formalism to derive the time change of each mode amplitude and phase.

- This method disentangles the evolution of the modes between them.

Fourier in a ring

Fourier in a ring

We fit by least squares
$\longrightarrow Z(\phi)=\sum_{m=0}^{M} A_{m} \sin \left(m \phi-\varphi_{m}\right)$

Data

Cepheids:

- Young pulsating stars (<500 My).
- Photometric distance from a P-L relation.
- Uncertainty in distance is less than ~4\%.

Skowron et al. (2019b) sample:

- 2385 Cepheids (OGLE+GCVS+Gaia DR2).
- Proper motions from Gaia DR3.
- Radial velocity from the rotation curve by Ablimit et al. 2020

Applying quality filters (in z, vz and astrometry) the final sample has 1997 Cepheids.

Structure and kinematics

$$
\begin{array}{ll}
I z \quad\left|v_{z}\right|
\end{array}
$$

The Cepheid's warp: in Z

The Cepheid's warp: in Z

Plateau in $\mathrm{R}=11 \mathrm{kpc}$ at the anticentere direction

The Cepheid's warp: in Z

Plateau in $\mathrm{R}=11 \mathrm{kpc}$ at the anticentere direction North-South angular separation $\neq 180^{\circ}(m=2$ is needed $)$

The asymmetry of the warp

The asymmetry of the warp

For $R<13$ kpc the warp is asymmetric ($\sim 250 \mathrm{pc}$). For $\mathrm{R}>13 \mathrm{kpc}$ the warp is quite symmetric ($\sim 100 \mathrm{pc}$)

The Cepheid's warp: Vz

The extremes are closer than expected by a tilted ring model

Vz arcs

Vz arcs are a consequence of the twisted LMVz.

Vz arcs

Time evolution of the warp

The basic idea of the method

In a razor thin disc, the star height $z(t)$ is the warp expression $\mathcal{Z}(\phi)$ in the azimuth $\phi(t)$ of the star

$$
\begin{aligned}
& z(t)=\mathcal{Z}(\phi(t))=A \sin [\phi(t)-\omega t] \\
& \phi(t)=\Omega t+\phi_{0}
\end{aligned}
$$

The basic idea of the method

In a razor thin disc, the star height $z(t)$ is the warp expression $\mathcal{Z}(\phi)$ in the azimuth $\phi(t)$ of the star

$$
\begin{aligned}
& z(t)=\mathcal{Z}(\phi(t))=A \sin [\phi(t)-\omega t] \\
& \phi(t)=\Omega t+\phi_{0}
\end{aligned}
$$

The vertical velocity is

$$
\begin{aligned}
v_{z}(t) & =\dot{z}(t)=A[\Omega-\omega] \cos (\phi(t)-\omega t) \\
& =A[\Omega-\omega] \sin \left(\phi(t)-\omega t+\frac{\pi}{2}\right) \\
& =V \sin \left(\phi(t)-\omega t-\varphi^{V}\right)
\end{aligned}
$$

The basic idea of the method

In a razor thin disc, the star height $z(t)$ is the warp expression $\mathcal{Z}(\phi)$ in the azimuth $\phi(t)$ of the star

$$
\begin{aligned}
& z(t)=\mathcal{Z}(\phi(t))=A \sin [\phi(t)-\omega t] \\
& \phi(t)=\Omega t+\phi_{0}
\end{aligned}
$$

The vertical velocity is

$$
\begin{aligned}
v_{z}(t) & =\dot{z}(t)=A[\Omega-\omega] \cos (\phi(t)-\omega t) \\
& =A[\Omega-\omega] \sin \left(\phi(t)-\omega t+\frac{\pi}{2}\right) \\
& =V \sin \left(\phi(t)-\omega t-\varphi^{v}\right)
\end{aligned}
$$

If the warp doesn't change in amplitude, then $\varphi-\varphi^{V}=-\frac{\pi}{2}$ and the ratio between the amplitudes give us the pattern speed $\frac{V}{A}=\Omega-\omega$ If $\dot{A} \neq 0$ then $\varphi-\varphi^{V} \neq-\frac{\pi}{2}$. A general equation can be derived to take into account \dot{A}

We get the pattern speed and change in amplitude for each mode as a function of the radius
$\Omega-\omega_{m}=\frac{V_{m}}{m A_{m}} \sin \left(\varphi_{m}-\varphi_{m}^{V}\right)$

$$
\dot{A}_{m}=V_{m} \cos \left(\varphi_{m}-\varphi_{m}^{V}\right)
$$

We get the pattern speed and change in amplitude for each mode as a function of the radius

$$
\Omega-\omega_{m}=\frac{V_{m}}{m A_{m}} \sin \left(\varphi_{m}-\varphi_{m}^{V}\right)
$$

$$
\dot{A}_{m}=V_{m} \cos \left(\varphi_{m}-\varphi_{m}^{V}\right)
$$

Conclusions:

- The warp is lopsided. An $m=2$ mode is needed in Z and $V z$.
- The extremes of the warp have different amplitudes and are never diametrically opposed
- The line of maximum Vz does not coincide with the LON. It trails behind it with a constant offset off 25.4 deg. Both are similarly twisted (leading).
- The arcs in Vz as a function of R observed in other stellar populations are also present in the Cepheids sample. We found it to be a consequence of the twisted LMVz.
- Our new method takes into account the presence of any number of modes and disentagles them, Model independent, not equilibrium assumptions.
- We found a prograde rotation of the $m=1$ mode, with a slight differential rotation.
- The amplitude of the $\mathrm{m}=1$ mode is constant in time for $\mathrm{R}<14 \mathrm{kpc}$ but it has a grow tendency in the outskirts of the disc.

