Where’s Waldo? Unveiling a metal-poor extension of the Milky Way thin disc with Pristine-Gaia-synthetic
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_[ FROM THE PRISTINE SURVEY TO PRISTINE-GAIA ]_ ([ WHY IS THIS STRUCTURE INTERESTING? ]
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. g The formation processes leading to the Milky Way we know are encoded in the properties of the first stellar populations, mostly through orbital motion and chemical content. These first populations are characterized by
2022: rework of Fernandex-AIvgr etal. 2021 X E o id their very low metal content and have been the object of searches for the past decades, e.g. Frebel & Norris 2015. With the rise of surveys like Gaia, Pristine and WEAVE, new structures and signatures are being
—» metal-poor subset of fast-rotating, prograde stars populating the T w0 identified, such as individual extremely/very-metal-poor prograde, fast-rotating stars (Sestito et al. 2019). Evidencing the presence of a substructure composed of such stars could thus provide valuable hints to better
MW »thwn disc ) H £ understand the different stages of early galactic evolution, in particular those of the Milky Way disc.
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Pristine CaHK filter and infer photometric 2 oo § — At lower [Fe/H]: we recover a population with halo kinematics N 1600
(Martin et al. 2023, Submz\tted) PN w = with little/no net rotation and a large velocity dispersion: expected 6000 | = 17 <[Fe/Hlpos < -1.0, 145306 stars
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We can look into the significance of the remaining PGS fast-rotating

metal-poor stars once the contaminants are taken into account. We can

4[ HOW TO FILTER INTERLOPERS ? ]7 quantify this using the statistics of PGS in small [Fe/H] bins (figure on the right). raof]
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o GDR3/PGS FLAGS FILTERING We investigate the action space using the orbital parameters of Kordopatis et al. 2023 (figure % 3
. " on the right), where the contours and density scale are the main sample and the ~ g
o, — GDR3 cuts: RUWE < 1.4, relative parallax contaminants are overplafted, ) g
= uncertainty < 20%, M < 7.5 mag N 2
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- 17 A’_ of PGS-APOGEE stars are filtered — for a given age, should be more metal-poor Joltot
— Similarly, we clean the full PGS — for a given metallicity, should be younger
—[ CONCLUSIONS J . The robustness of this result must be enhanced through MCMC (draws on VW and [Fe/H])
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