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Part 1: inventory

entire Milky Way: 10%!
' Gaia 5d astrometric catalogue: 1.5 x 10°
| w/em >5: 2 x 108
w/em >10: 1 x 108

Gaia RVS sample: 3 x 107

\
' APOGEE DRIT: 6 x 10°
|




Input data for models: 6d kinematic catalogues
P1: Gaia DR2 RVS (6 x 10°) P2: Gaia DR3+-APOGEE DR17 (5 x 10°)

5x7 bins
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Input data for models: 6d kinematic catalogues

1d histograms of velocity distributions in

X a few dozen spatial bins across R, z plane
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Chemo-kinematic components in the Milky Way
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Chemo-kinematic components in the Milky Way
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Chemo-kinematic components in the Milky Way
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Part 2: global [chemo]-dynamical models of the Galaxy

>
>
>

Present a bird’'s-eye view on the Milky Way (ignore details).
Synthesize a coherent picture from a large diversity of observational data.

Ensure dynamical self-consistency
(stars + DM are responsible for the total gravitational potential).

Provide distribution functions for different Galactic populations.

Allow one to infer [missing] attributes for individual objects
or to construct of mock datasets by sampling from the model.

example of model deliverables:
circular-velocity curve,
fractional contribution of DM

V.[km/s]
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Iterative construction of self-consistent dynamical models

A given population of stars k (e.g., a-rich disc) is fully described by the distribution
function in the 6d phase space fi(x,v).

In particular, the density is px(x) = [[[ fu(x,v) d®v.

In a steady state, the DF must depend only on the integrals of motion Z(x,v; ®)
(Jeans's theorem), which depend on the potential ¢ (e.g., energy E = ®(x) + 1[v|?).

The potential, in turn, is linked to density by the Poisson equation V2® = 471G >k Pk



Iterative construction of self-consistent dynamical models

A given population of stars k (e.g., a-rich disc) is fully described by the distribution
function in the 6d phase space fi(x,v).

In particular, the density is px(x) = [[[ fu(x,v) d®v.

In a steady state, the DF must depend only on the integrals of motion Z(x,v; ®)
(Jeans's theorem), which depend on the potential ¢ (e.g., energy E = ®(x) + 1[v|?).

The potential, in turn, is linked to density by the Poisson equation V2® = 471G >k Pk

1. assume f(Z) and _—— 2. repeat
an initial guess for ¢ establish Z(x, v; )

compute p(x) =

[ff B f(xv) O \

update ®(x) from 3. enjoy!
the Poisson equation



Dynamical modelling with /\@/\M‘ﬁ
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Solving the Poisson equation for an arbitrary density profile p(x) =
flexible Multipole, BasisSet and CylSpline potential expansions.

Computing the [approximate] integrals of motion in an arbitrary potential =
Stédckel fudge action finder [axisymmetric].

Distribution functions for discy and spheroidal populations =
QuasiIsothermal, Exponential, DoublePowerLaw DF families.

Computation of DF moments (v, o), velocity distributions, etc.,
generation of samples from the DF (e.g., particle snapshots for N-body simulations).

Iterative construction of self-consistent models specified by DFs.



Agama — all-purpose galaxy modelling framework
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Part 3: Model fitting

» Choose suitable DF families f,(J; &) for all galactic components (several discs,
bulge, stellar and dark halo) with 6-10 free parameters & per component k.

» [P2 only]: assign a chemical DF Py(c | J; m) for each stellar component
(c = [Fe/H] and [Mg/Fe], n are ~ 10 chemical parameters).

[Mg/Fe]
'?_I‘
Q
I

» For each choice of parameters &, n:
e Construct a self-consistent dynamical model (~ a few minutes); Q"
e Compute velocity distributions f(vg), f(v;), f(vg) in a few dozen spatial bins;
e [P2 only]: Compute chemical distributions in a few dozen bins in action space;

e Compare with observed histograms, ignoring (freely adjusting) the overall
normalization in each bin, compute the [quasi-]likelihood L.

» Adjust parameters and repeat (try to find the maximum-likelihood solution)...



Inferring the potential from kinematic data

Jeans equation(s):
p(x), o(x) = d(x).

1d example:

d(paz) do
dx +pd7 =0

|

pressure gravitational
gradient force

(hydrostatic equilibrium).
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Inferring the potential from kinematic data
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Inferring the potential from kinematic data
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Inferring the potential from kinematic data
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Inferring the potential from kinematic data
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Inferring the potential from kinematic data
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Model-data comparison: kinematics

significantly non-Gaussian velocity distributions are produced by a superposition of
several components (thin disc with a certain age—velocity dispersion relation discretized

into three parts, thick disc and stellar halo).
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Model-data comparison: kinematics

S o n

fits to velocity histograms across the entire disc: not perfect, but reasonable
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[Mg/Fe]

Model-data comparison: chemistry

fits to chemical histograms [Fe/H] vs. [Mg/Fe] in 30 bins
in the Js—J, space: qualitatively reproduce the main features
(e.g., a-poor becoming geometrically thick outside Rg)
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Model-data comparison: chemistry

chemical gradients in the action space are still steeper in the data; the model struggles to
reproduce the sharp transition to the outer a-poor but vertically thick disc at R 2 Rg.
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Caveats and limitations of the model

| 2

>

axisymmetry (needed for action computation) =
the bar region is not adequately represented.

equilibrium (precondition for the Jeans theorem) =
features such as the Gaia snail or spiral arms are ignored in the baseline model,
but can be considered in the perturbation theory.

only fit the mean abundances
(although the underlying chemical model provides a full abundance distribution).

stellar ages are ignored (the age-o relation is imposed implicitly):
the age distribution may be treated similarly to the chemical one.

no built-in chemical evolution or radial migration model.

presented one plausible model, but cannot claim to have found
the global maximum-likelihood solution =

model fitting in the 100-dimensional parameter space is a nightmare,
need better optimisation methods.






