Gaia RVS spectroscopy: do you really know it?

Alejandra Recio-Blanco Observatoire de la Côte d'Azur (Lab. Lagrange)

RVS = Radial Velocity Spectrograph

GSPSpec = General Stellar Parametrizer - spectroscopy

Gaia

I AGRAN

eesa

2. Why is it unique (and you maybe did not realize it) ?

2. Why is it unique ?

Physics:

RVS spectroscopy adds to Gaia's astrometric classical approach, a physical approach of modern astrophysics

Diversity:

Medium resolution spectroscopy coupled to high nb statistics increases dimensionality of parameter space to unprecedented levels

Precision (spectral fidelity + homogeneous treatment):

RVS allows a stellar parametrization of quality comparable to groundbased data of higher resolution/spectral coverage:

ex. high precision params., heavy elements, thin/thick disc chemical separation power, ...

2. Why is it unique ?

Physics:

RVS spectroscopy adds to Gaia's astrometric classical approach, a physical approach of modern astrophysics

Diversity:

Medium resolution spectroscopy coupled to high nb statistics increases dimensionality of parameter space to unprecedented levels

Precision (spectral fidelity + homogeneous treatment):

RVS allows a stellar parametrization of quality comparable to groundbased data of higher resolution/spectral coverage:

ex. high precision params., heavy elements, thin/thick disc chemical separation power, ...

CU8/GSPspec: The chemical composition of 5.6 million stars

Credits:ESA/GAIA/DPAC-CU8-CU6 Recio-Blanco and the GSPspec team

Galactic alchemists

dwarf

long life (billions of years)

sulfur

brief life (millions of years)

silicon

Different nucleosynthetic channels

Big Bang fusion 2 He 1 H Cosmic ray fission Gaia RVS element abundances Exploding massive stars 3 Li 10 Exploding white dwarfs 5 B Ne Be F Merging neutron stars Dying low-mass stars 18 Ar Very radioactive isotopes; nothing left from stars CI Na AI S 33 30 Zn 31 34 35 36 Cu Cr Ni Mn Fe Co Ga Ge As Se Br Kr 52 Te 39 45 49 50 54 43 48 51 53 37 38 42 46 Pd 47 44 Mo Cd Rb Sr Zr Tc Ru Rh Sb Nb Ag In Sn 1 Xe 55 56 72 Hf 73 **Ta** 74 W 86 75 78 Pt 80 81 82 83 84 85 76 77 79 Cs Re Os lr. Au Hg Ti Pb Bi Po At Rn Ba 88 87 Fr Ra 60 Nd 62 63 68 69 71 61 64 65 66 67 70 Tb Yb Pr Pm Sm Eu Dy Но Er Tm La Ce Gd Lu Adapted from 89 94 91 92 93 90 J. A. Johnson U Np Pa Ac Th Pu type II supernova type la supernova oxygen magnesium traces of other credits C. Chiappini iron elements red giant massive white

A star's life cyle

Related Gaia DR3 Papers

• Recio-Blanco et al. 2023

Gaia Data Release 3

Analysis of RVS spectra using the General Stellar Parametriser from spectroscopy

• Gaia Collaboration, Recio-Blanco et al. 2023

Gaia Data Release 3

Chemical cartography of the Milky Way

- Vallenari et al. 2023; Creevey et al. 2023; Fouesneau et al 2023
- Katz et al. 2023; Seabroke et al. 2023

Related Gaia DR3 Papers

• Recio-Blanco et al. 2023

Gaia Data Release 3

Analysis of RVS spectra using the General Stellar Parametriser from spectroscopy

• Recio-Blanco et al. 2023

Quality flags and offset corrections (c.f tables 2-4)

Chain character	Considered	Possible	Related	
number - name	quality aspect	adopted values	subsection and table	
1 vbroadT	vbroad induced bias in $T_{\rm eff}$	0,1,2,9	8.1 & C.1	
2 vbroadG	vbroad induced bias in $log(g)$	0,1,2,9	8.1 & C.1	
3 vbroadM	vbroad induced bias in [M/H]	0,1,2,9	8.1 & C.1	
4 vradT	vrad induced bias in $T_{\rm eff}$	0,1,2,9	8.2 & C.2	
5 vradG	vrad induced bias in $log(g)$	0,1,2,9	8.2 & C.2	
6 vradM	vrad induced bias in [M/H]	0,1,2,9	8.2 & C.2	
7 fluxNoise	flux noise uncertainties	0,1,2,3,4,5,9	8.3 & C.3, C.4	
8 extrapol	extrapolation	0,1,2,3,4,9	8.4 & C.5, C.6	
9 negFlux	negative flux pixels	0,9	8.5 & C.7	
10 nanFlux	NaN flux pixels	0,1,9	8.5 & C.7	
11 emission	emission line	0,1,9	8.5 & C.7	
12 nullFluxErr	null uncertainties	0,1,9	8.5 & C.7	
13 KMgiantPar	KM-type giant stars	0,1,2,9	8.6 & C.8	
14 NUpLim	Nitrogen abundance upper limit	0,1,2,9	8.7 & C.9	
15 NUncer	Nitrogen abundance uncertainty quality	0,1,2,9	8.7 & C.10	
16 MgUpLim	Magnesium abundance upper limit	0,1,2,9	8.7 & C.9	
17 MgUncer	Magnesium abundance uncertainty quality	0,1,2,9	8.7 & C.10	
18 SiUpLim	Silicon abundance upper limit	0,1,2,9	8.7 & C.9	
19 SiUncer	Silicon abundance uncertainty quality	0,1,2,9	8.7 & C.10	
20 SUpLim	Sulphur abundance upper limit	0,1,2,9	8.7 & C.9	
21 SUncer	Sulphur abundance uncertainty quality	0,1,2,9	8.7 & C.10	
22 CaUpLim	Calcium abundance upper limit	0,1,2,9	8.7 & C.9	
23 CaUncer	Calcium abundance uncertainty quality	0,1,2,9	8.7 & C.10	
24 TiUpLim	Titanium abundance upper limit	0,1,2,9	8.7 & C.9	
25 TiUncer	Titanium abundance uncertainty quality	0,1,2,9	8.7 & C.10	
26 CrUpLim	Chromium abundance upper limit	0,1,2,9	8.7 & C.9	
27 CrUncer	Chromium abundance uncertainty quality	0,1,2,9	8.7 & C.10	
28 FeUpLim	Neutral iron abundance upper limit	0,1,2,9	8.7 & C.9	
29 FeUncer	Neutral iron abundance uncertainty quality	0,1,2,9	8.7 & C.10	
30 FeIIUpLim	Ionised iron abundance upper limit	0,1,2,9	8.7 & C.9	
31 FeIIUncer	Ionised iron abundance uncertainty quality	0,1,2,9	8.7 & C.10	
32 NiUpLim	Nickel abundance upper limit	0,1,2,9	8.7 & C.9	
33 NiUncer	Nickel abundance uncertainty quality	0,1,2,9	8.7 & C.10	
34 ZrUpLim	Zirconium abundance upper limit	0,1,2,9	8.7 & C.9	
35 ZrUncer	Zirconium abundance uncertainty quality	0,1,2,9	8.7 & C.10	
36 CeUpLim	Cerium abundance upper limit	0,1,2,9	8.7 & C.9	
37 CeUncer	Cerium abundance uncertainty quality	0,1,2,9	8.7 & C.10	
38 NdUpLim	Neodymium abundance upper limit	0,1,2,9	8.7 & C.9	
39 NdUncer	Neodymium abundance uncertainty quality	0,1,2,9	8.7 & C.10	
40 DeltaCNq	Cyanogen differential equivalent width quality	0,1,2,9	8.9 & C.12	
41 DIBq	DIB quality flag	0,1,2,3,4,5,9	8.8 & C.13	

To be used and adapted to your scientific goal

Parameter	p_0	p_1	p_2	p_3	p_4
$\log(g)$	0.4496	-0.0036	-0.0224		
[M/H]	0.274	-0.1373	-0.0050	0.0048	
[M/H] _{OC}	-0.7541	1.8108	-1.1779	0.2809	-0.0222

Element	p_0	p_1	p_2	<i>p</i> ₃	p_4	Recommen	ded interval	extrapol flag
	As a function of $log(g)$				$\operatorname{Min} \log(g)$	$Max \log(g)$		
$[\alpha/\text{Fe}]$	-0.5809	0.7018	-0.2402	0.0239	0.0000	1.01	4.85	0
[Ca/Fe]	-0.6250	0.7558	-0.2581	0.0256	0.0000	1.01	4.85	0
[Mg/Fe]	-0.7244	0.3779	-0.0421	-0.0038	0.0000	1.30	4.38	0
[S/Fe]	-17.6080	12.3239	-2.8595	0.2192	0.0000	3.38	4.81	0
[Si/Fe]	-0.3491	0.3757	-0.1051	0.0092	0.0000	1.28	4.85	0
[Ti/Fe]	-0.2656	0.4551	-0.1901	0.0209	0.0000	1.01	4.39	0
[Cr/Fe]	-0.0769	-0.1299	0.1009	-0.0200	0.0000	1.01	4.45	0
[Fe I/H]	0.3699	-0.0680	0.0028	-0.0004	0.0000	1.01	4.85	0
[Fe п/H]	35.5994	-27.9179	7.1822	-0.6086	0.0000	3.53	4.82	0
[Ni/Fe]	-0.2902	0.4066	-0.1313	0.0105	0.0000	1.41	4.81	0
[N/Fe]	0.0975	-0.0293	0.0238	-0.0071	0.0000	1.21	4.79	0
$[\alpha/\text{Fe}]$	-0.2838	0.3713	-0.1236	0.0106	0.0002	0.84	4.44	≤ 1
[Ca/Fe]	-0.3128	0.3587	-0.0816	-0.0066	0.0020	0.84	4.98	≤ 1
	As a function of $t = T_{\text{eff}}/5750$				Min $T_{\rm eff}$	Max $T_{\rm eff}$		
$[\alpha/\text{Fe}]$	-6.6960	20.8770	-21.0976	6.8313	0.0000	4000	6830	≤ 1
[Ca/Fe]	-7.4577	23.2759	-23.6621	7.7657	0.0000	4000	6830	≤ 1
[S/Fe]	0.1930	-0.2234	0.0000	0.0000	0.0000	5700	6800	≤ 1

• Recio-Blanco et al. 2023

Spectral analysis methodology, tips and examples of usage

Fil Fel

H

Vacuum Wavelength (nm)

Related Gaia DR3 Papers

Astronomy Astrophysics Special issue

• Gaia Collaboration, Recio-Blanco et al. 2023

Gaia Data Release 3

Chemical cartography of the Milky Way

Performance verification on Galactic physics Selection function illustration

Galactic disc: structure and chemical gradients

Vertical and radial cartography of [alpha/Fe] vs. [M/H] colour coded with Galactic azimuthal velocity

Thin disc stars are found at 3 kpc from the plane in the outer regions !

Chemical markers of disc perturbations: kinematics and phase spiral as a function of R

Wave-like perturbation (Antoja et al. 2018):

- disc-crossing satellite (Binney & Schoenrich 2018, Bland-Hawthorn et al. 2019)
- bar's buckling (Koperskov et al. 2019)
- **Correlation** of thin disc phase spiral **with metallicity excess** detected for the first

time

- Chemical markers of disc perturbations: orbital space
 - **Ridges** of higher stellar density:
 - orbits closer to the plane
 - metallicities higher than surrounding median values.

Documentation and webinars

- Gaia DR3 documentation, chapter 11 Astrophysical Parameters, Ulla et al. (2022)
- Gaia Coordination Unit 8, webinars: GSPspec by Pedro A. Palicio

2. Why is it unique ?

Physics:

RVS spectroscopy adds to Gaia's astrometric classical approach, a physical approach of modern astrophysics

Vincent Van Gogh (1888)

To.

*

10

Vincent Van Gogh (1888)

DSS image

Vincent Van Gogh (1888)

SPECTRUM . BAURIGÆ.

1889, DEC. 30ª 17:6 G.M.T.

Henry Drapper Memorial work at the Harvard of Observatory (1889)

DSS image

Vincent Van Gogh

(1888)

13 Boo Gaia DR3 1511173389717021312

All sky spectroscopic survey with high number statistics

Gaia GSPspec data everywhere!

Gaia GSPspec

Teff = 3760Klog g = 0.41 cm/s² [M/H] = -0.66 dex [alpha/Fe] = 0.14 dex [Ca/Fe] = 0.19 dex [Ca/Fe] = 0.59 dex [Cr/Fe] = 0.3 dex [Ce/Fe] = 0.34 dex

A. Recio-Blanco

2. Why is it unique ? Physics

Diversity

Medium resolution spectroscopy coupled to high nb statistics increases dimensionality of parameter space to unprecedented levels

Diversity

5.6 million parametrized stars means exploring the queue of the distributions

S-type, R-type, C-type stars Blue Loop, RC, tip RGB stars heavy-element enhanced stars extremely metal-poor stars accreted stars exoplanet hosts variables binaries (non spectroscopic)

- thin disc stars at 4 kpc from the Galactic plane
- ... and probably your favourite targets at G<14 mag

2. Why is it unique ? Physics

Diversity

Precision (spectral fidelity + homogeneous treatment): RVS allows a stellar parametrization of quality comparable to groundbased data of higher resolution/spectral coverage

Precision

Gaia/RVS is **SPACE spectroscopy f** ground based spectroscopy

Recio-Blanco et al. 2023

Precision : Heavy element abundances

Flat [Ce/Fe] radial gradient and positive vertical gradient Slightly possitive [Ce/Ca] trend vs. [Ca/H] -> AGB stars are the main responsibles for Cerium abundances in the disc.

Precision : Heavy element abundances

Heavy elements: Neodymium

Contursi et al. (2023)

AGB production of s-process elements:

Higher Ce and Nd abundances for more evolved AGB stars of similar metallicity.

High enough precision and nb statistics to select stars in different age bins.

Chemical signature of the Spiral Arms

Poggio et al. (2022)

Age<1Gyr

Age>1Gyr

Metallicity signatures both in the young (Poggio et al. 2023) in the old population (Barbillon et al., in prep.)

The spiral arms signature is **visible in the relative abundance of α-elements with respect to iron.**

Precise α -element abundances

Zoom-in cosmological simulations (New Horizons)

Peirani et al., in prep.

Spiral structure detected in several galaxies for stars as old as 6 Gyr

-0.4 < [M/H] < -0.3 dex

Recio-Blanco et al. 2023, to be submited

Recio-Blanco et al. 2023, to be submited

Recio-Blanco et al. 2023, to be submited

Important! The "separation" power between thin/thick disc sequences depends on the lifetimes of the chemical element sources (short-lived versus long-lived ones)

This is supported by:

• Chemical evolution models:

Prantzos et al. 2023, Spitoni et al. 2023

• Observations by different spectroscopic surveys:

Gaia-ESO Survey (Mikolaitis et al. 2014) AMBRE project (de Laverny et al. 2012, Prantzos et al. 2023) APOGEE data (Abdurro'uf et al. 2022)

....

Important! The "separation" power between thin/thick disc sequences depends on the lifetimes of the chemical element sources (short-lived versus long-lived ones)

Warning for data driven parametrization methods applied to RVS spectra, but trained on a different catalogue

If the method loosely separates thin/thick discs using CaT lines

=> it is probably **not estimating [Ca/Fe]** abundances from the RVS data, **but just producing a potential [Mg/Fe] abundance assuming the underlying Ca-Mg relation in the training set**.

Important! The "separation" power between thin/thick disc sequences depends on the lifetimes of the chemical element sources (short-lived versus long-lived ones)

The GSPspec α diagnostic is dominated by the calcium lines

In GSPspec [α /Fe] = [Ca/Fe]

Precision : comparison with asteroseismology

Gaia/GSPspec + Kepler (colour code on Delta π & metallicity)

Conclusions

- The Gaia future is bright:
 - only ¼ of the data analysed in DR3!
 - RVS data SNR increasing
- Much larger chemo-dynamical catalogues to come:
 - o 5.6 million stars with chemo-physical parameters in DR3 (2022)
 - ~ 35 million stars in DR4 (end 2025)
 - ~100 million stars in DR5 (2030)
- Gaia RVS offers high precision parametrization Quality comparable to ground-based data of higher resolution/spectral coverage and much higher number statistics

CU8/GSPspec: The chemical composition of 5.6 million stars

Apsis DPAC/CU8 pipeline

GSPspec (Recio-Blanco et al. 2022) is an up-stream module of the Astrophysical parameters inference system (Creevey et al. 2022)

Treats RVS stacked spectra produced by DPAC/CU6 (Katz et al. 2022)

Gaia/RVS: high precision Kiel diagrams

Gaia DPAC

SNR>150 High quality parameter flags

Recio-Blanco et al. (2022)

High quality spectra: continuous observations for 3 years, no atmosphere, control of systematics, ... Gaia is not a ground-based survey!

Absorption from interstellar dust molecules (DIB) on an individual spectrum basis

Recio-Blanco et al. (2022)

CU8/GSPspec: Comparison with ground-based surveys

	$T_{\rm eff}$	$\log(g)$	[M/H]	$\log(g)_{\text{calibrated}}$	[M/H] _{calibrated}	RVS S/N
RAVE-DR6	(-12; 93)	(-0.28; 0.19)	(-0.05; 0.11)	(-0.003; 0.18)	(-0.05; 0.09)	(94; 64)
GALAH-DR3	(20;87)	(-0.26; 0.21)	(0.01; 0.10)	(0.003; 0.18)	(-0.001; 0.10)	(68; 53)
APOGEE-DR17	(-32; 86)	(-0.32; 0.17)	(0.04; 0.12)	(-0.005; 0.15)	(0.06; 0.12)	(65; 80)

General very good agreement

The extreme homogeneity of Gaia RVS/GSPspec highlights literature inhomogeneity (in methods, models, reference data, uncertainty definitions, selection functions...)

CU8/GSPspec: Comparison with ground-based surveys

[Ca/Fe]

Gaia

[Ce/Fe]

Chemical markers of disc perturbations: kinematics and phase spiral as a function of R

Wave-like perturbation (Antoja et al. 2018):

- disc-crossing satellite (Binney & Schoenrich 2018, Bland-Hawthorn et al. 2019)
- bar's buckling (Koperskov et al. 2019)
- **Correlation** of thin disc phase spiral **with metallicity excess** detected for the first

time

Galactic disc: a young chemically impoverished population?

Young stellar populations in the spiral arms

Depletion consistent with other HR surveys (APOGEE)

Gaia

PAC

Galactic disc: a young chemically impoverished population?

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.00

-0.05

0.05 2 0.4

1.0

.0.8

Z 0.6

0.0

-1.2

0 2 4 6 8 10 12 14

-0.8

Age [Gvr

Spitoni et al. models

Galaxy formed by separated accretion episodes, modelled by decaying exponential infalls of gas.

Recent infall of gas related to thin disc star formation history and chemically depleted young populations

Spitoni, ARB et al. (2022)

13.2 Gyr

-0.4

[M/H]

Galactic disc: an analytical chemical model including Type Ia SN

Chemical evolution model integrated by extending the instantaneous recycling approximation with the contribution of Type Ia SNe

Extra term in the modelling depending on the Delay Time Distribution (DTD).

Four different DTDs are considered, either analyticaly or as a superposition of Gaussian, exponential and 1/*t* functions using a restricted least-squares fit.

Galactic disc: an analytical chemical model including Type Ia SN

Used to model the chemical evolution of the GALACTICA Milky Way-like simulated galaxy (Park et al. 2021) from its star formation history.

Extracted from a zoom-in hydrodynamical simulation in a cosmological context (S. Peirani) spatial resolution and sub-grid models as in NewHorizon simulation as in Dubois et al. 2021.

Chemo-dynamics with individual element abundances

Gaia collaboration, ARB et al. (2022)

