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Nuclear Physics

Dark Matter detection: baryonic DM interacts with nuclei! 
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Dark Matter detection: baryonic DM interacts with nuclei! 

Nuclear structure: static properties of nuclei
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The Quantum Many-Body Problem

• Goal: Solve for the wave function of an atomic nucleus, 𝜓
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• How? Rayleigh-Ritz variational principle
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The Quantum Many-Body Problem

• NQS Ansatz: 𝜓NQS 𝒑𝟏, 𝒑𝟐, … , 𝒑𝑵, ; 𝜽
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Why Neural Networks?

[1] G. Cybenko, Approximation by superpositions of a sigmoidal function, 1989

[2] K. Hornik M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, 1989

• NNs have “∞ power”: a neural network can approximate any continuous 
function [1], [2].



Why Neural Networks?

• Space complexity: polynomial scaling of memory resources… possibly!

[1] G. Cybenko, Approximation by superpositions of a sigmoidal function, 1989

[2] K. Hornik M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, 1989

• NNs have “∞ power”: a neural network can approximate any continuous 
function [1], [2].



Physics-Inspired Neural Networks

Encoding physics in NNs: symmetries of ෡𝐻, boundary conditions, etc.

My current work!

https://www.youtube.com/watch?v=hF_uHfSoOGA&ab_channel=ScienceClicEnglish

https://www.youtube.com/watch?v=hF_uHfSoOGA&ab_channel=ScienceClicEnglish


Symmetries in neural networks

1D HO: naive approach (but good!)
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Fermionic particle exchange: common approach

Spin-statistics theorem ⟶

𝜓 𝒙𝟏, … , 𝒙𝒊, … , 𝒙𝒋, … , 𝒙𝑵 = ±𝜓 𝒙𝟏, … , 𝒙𝒋, … , 𝒙𝒊, … , 𝒙𝑵

[3] J Keeble, A Rios et al, Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states, arXiv:2304.0475

𝜓NQS 𝑥1, 𝑥2, … , 𝑥𝑁 = 𝜑EQUIV ∘ det 𝜙GSM(𝑥1, 𝑥2, … , 𝑥𝑁)

[3]
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What about other symmetries (continuous groups)?
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Convolution is all you need

Φ 𝑇(𝑔)𝑥 = 𝑇′(𝑔)Φ 𝑥

Φ is equivariant under a group 𝐺 if:

𝑇𝑔: representation of 𝑔 ∈ 𝐺 on 𝑋 ∋ 𝑥
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Group convolution ⟺ Group equivariance (2016-2018) [4, 5, 6] 

[4] T S Cohen and M Welling, Group Convolutional Neural Networks, arXiv:1602.07576

[5] T S Cohen and M Welling, Steerable CNNs, arXiv:1612.08498

[6] R Kondor and S Trivedi, On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups, 
arXiv:1802.03690
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Can we re-think past networks as G-CNNs?

[4] T S Cohen and M Welling, Group Convolutional Neural Networks, arXiv:1602.07576
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Should we design NQSs within this framework?

(WIP)



Toy exemple: G = SN

PRELIMINARY!

𝑁 = 2, 1D HO  1 conv layer w/ bias  # weights = k( 𝐺 + 1 + |𝐺|𝑑𝑁) 𝑘 = 25, 𝐺 = 2, 𝑑 = 1



Toy exemple: G = SN

PRELIMINARY!

𝑁 = 2, 1D HO  1 conv layer w/ bias  # weights = k( 𝐺 + 1 + |𝐺|𝑑𝑁) 𝑘 = 25, 𝐺 = 2, 𝑑 = 1

Memory grows factorially with N 



Next steps and open questions…

• Why is the Slater “so good”? Can we explain it from the irreps of 𝑆𝑁? Can we 

find something even better? 

• Can we compute any excited state?

• What about continuous groups (SU(N))?
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