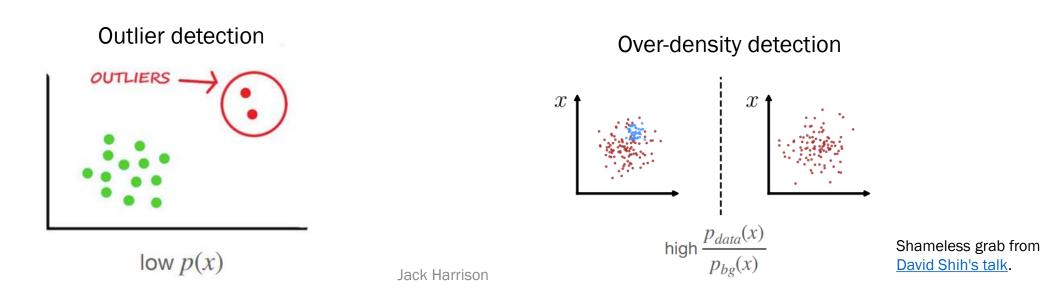
Anomaly detection with not-so-dense(ity) estimators at ATLAS

Jack Harrison¹

¹ Institut de Física d'Altes Energies, Barcelona

Cross-Collserola Meeting in Astrophysics, Cosmology and Particles



What is anomaly detection?

- > Machine learning generally falls under three categories:
 - 1. Supervised learning
 - > Distinct labels for all examples
 - 2. Semi-supervised learning
 - > A small number of examples are labelled
 - 3. Unsupervised learning
 - > No labels

06/10/2023

> Anomaly detection is a branch of unsupervised learning, where we try and learn directly from the distribution in order to detect outliers. It's generally split into two themes:

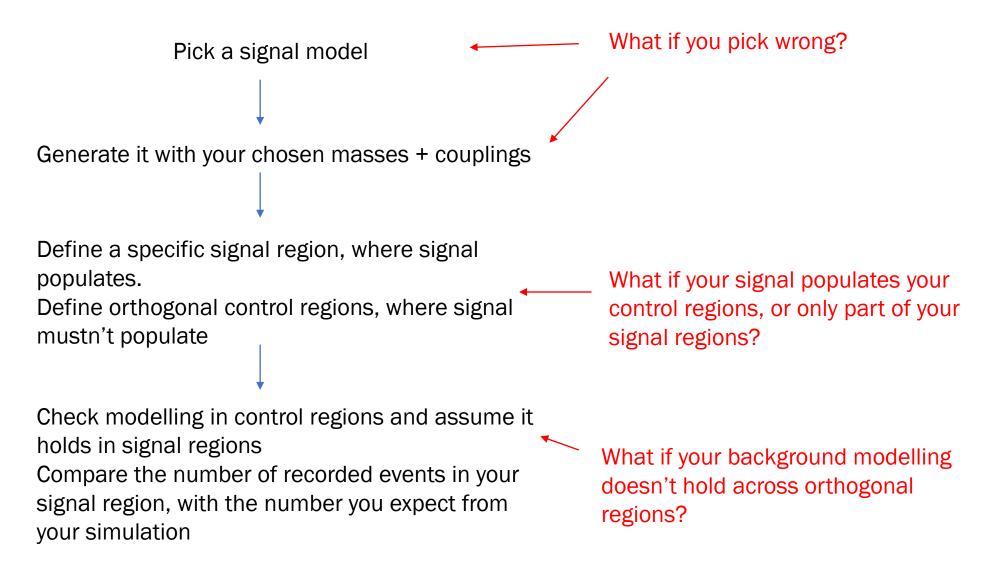
Why do we need anomaly detection?

	e	μ	τ	γ	j	b	t	W	Z	h
e	$\pm \mp [4], \pm \pm [5]$	$\pm \pm [5, 6] \pm \mp [6, 7]$	[7]	ø	ø	ø	ø	ø	Ø	ø
μ		$\pm \mp [4], \pm \pm [5]$	[7]	ø	ø	ø	ø	ø	ø	ø
τ			[8]	ø	ø	ø	[9]	ø	ø	ø
γ				[10]	[11-13]	ø	ø	[14]	[14]	ø
j					[15]	[16]	[17]	[18]	[18]	ø
b						[16]	[19]	ø	ø	ø
t							[20]	[21]	ø	ø
W								[22-25]	[23, 24, 26, 27]	[28 - 30]
Z									[23, 25, 31]	[28, 30, 32, 33]
h										[34 - 37]

TABLE I. Existing two-body exclusive final state resonance searches at $\sqrt{s} = 8$ TeV. The \emptyset symbol indicates no existing search at the LHC.

arXiv:1610.09392

The picture gets worse when including BSM resonances:


	e	μ	τ	q/g	ь	t	γ	Z/W	Н	$\mathrm{BSM}\to\mathrm{SM}_1\times\mathrm{SM}_1$			$BSM \to SM_1 \times SM_2$			$BSM \rightarrow complex$			
				475						q/g	γ/π^0 's	<i>b</i> ···	tZ/H	bH		$\tau qq'$	eqq'	$\mu q q'$	
e	[37, 38]	[39, 40]	[39]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø	ø	ø	ø	ø	[43, 44]	ø	
μ		[37, 38]	[39]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø	ø	ø	ø	ø	ø	[43, 44]	
τ			[45, 46]	ø	[47]	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	[48, 49]	ø	ø	
q/g				[29, 30, 50, 51]	[52]	ø	[53, 54]	[55]	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	
ь					[29, 52, 56]	[57]	[54]	[58]	[59]	ø	ø	ø	[60]	ø	ø	ø	ø	ø	
t						[61]	ø	[62]	[63]	ø	ø	ø	[64]	[60]	ø	ø	ø	ø	
γ							[65, 66]	[67-69]	[68, 70]	ø	ø	ø	ø	ø	ø	ø	ø	ø	
Z/W								[71]	[71]	ø	ø	ø	ø	Ø	ø	ø	ø	ø	
Н									[72, 73]	[74]	ø	ø	ø	ø	ø	ø	ø	ø	
$= \frac{q/g}{q}$										ø	ø	ø	ø	ø	ø	ø	ø	ø	
$\begin{bmatrix} q/g \\ W_S & \gamma/\pi^{0.8} \\ \times & b \end{bmatrix}$											[75]	ø	ø	ø	ø	ø	ø	ø	
												[76, 77]	ø	ø	ø	ø	ø	ø	
Ś :																			
y I																			
BSM																			
tZ/H																			_
$\rightarrow SM_1 \times SM_2$:: $\rightarrow H_2$																			
×																			
SM																			
1																			
BSM																			
" :																			
$\tau qq'$																			
eqq'																			
duo µqq'																			
pp = eqq' pp = pqq' pq = pq' pq = pq'																			
- :																			
BSM																			
1																			_

arXiv:1907.06659

- > The phase-space of potential BSM models is too large to be covered by dedicated analyses.
- > We need a way of casting a broad net, that is sensitive to a range of new physics.

A standard search

Problems:

Normalising flows

- > We want some model that can take an input $z \sim p_z$, which is easy to sample, and can generate our complicated distribution p_x . We do this by learning an invertible mapping $x = f_{\theta}(z)$ and $z = f_{\theta}^{-1}(x)$.
- > We rely on the change of variables formula for probability densities;

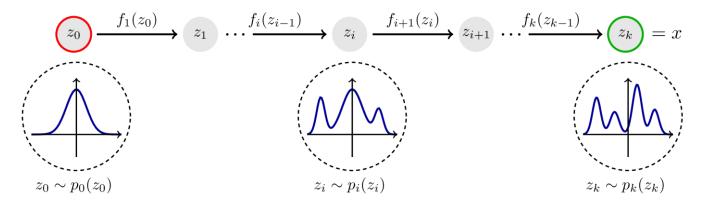
$$p_{x}(x;\theta) = p_{z}\left(f_{\theta}^{-1}(x)\right) |\det(\frac{\partial f_{\theta}^{-1}(x)}{\partial x})|$$

- > In order to use this, we require;
 - 1. Input and output dimensionality is the same
 - 2. The learnt mapping must be invertible
 - 3. The determinant of the Jacobian needs to be tractable (and efficient).

> There are several ways to ensure 1-3, here we focus on the Real Non-Volume Preserving (RealNVP) model where we separate z into two disjoint subsets, z_1 and z_2 and then apply two neural networks (s_{θ} , m_{θ}):

$$x_1 = z_1,$$

$$x_2 = e^{s_\theta(z_1)} + m_\theta(z_1)$$


Jack Harrison

Normalising flows

> Stacking layers of transforms leads us to a loss function that is allows us to explicitly minimise the negative log-likelihood of our input data (*D*):

$$\log p_{\chi}(x;\theta) = \log p_{Z}(z_{0}) - \sum_{i=1}^{\kappa} \log \left| \det \frac{df_{i}}{dz_{i-1}} \right|,$$

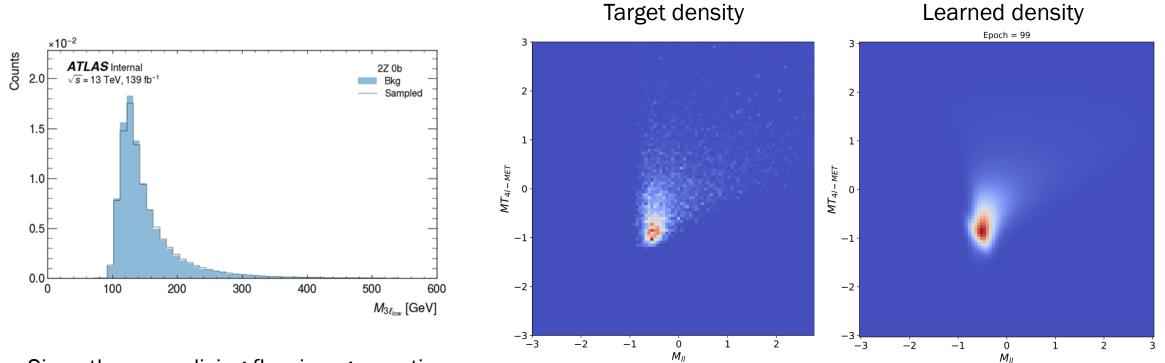
$$\mathcal{L}(D) = -\frac{1}{D} \sum \log p_x$$



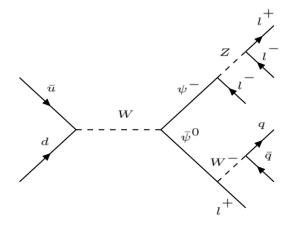
Base density

Transformed density

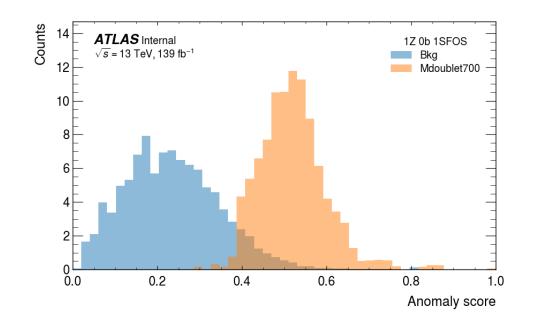
Model-independent multi-lepton analysis

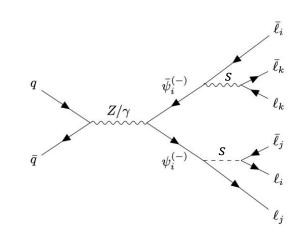

> Search for new physics in events with ≥ 4 light leptons (e, μ);

> Gives us a large scope for potential BSM models, as heavy resonances can easily decay through chains that produce high lepton multiplicities.

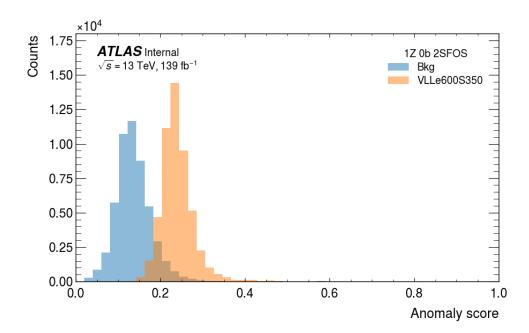

Using normalising flows

> We then train one normalising flow per region, training on our simulated MC background only, before evaluating on signal and background.

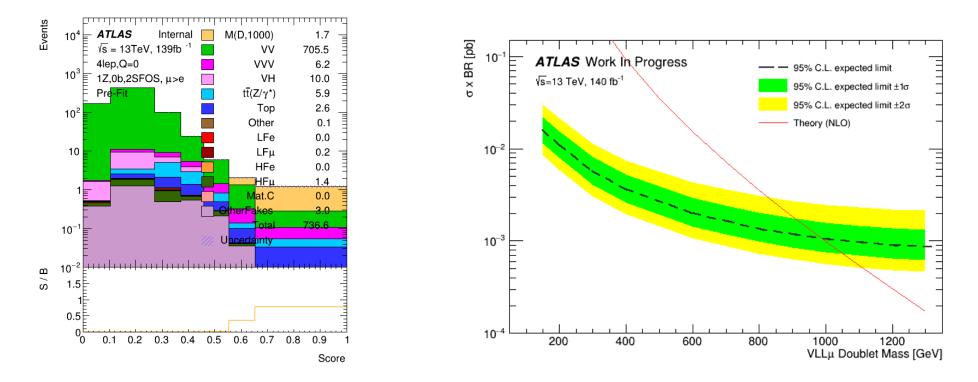



Since the normalising flow is a generative model, we can check the learnt distribution by sampling.

Example signal models:

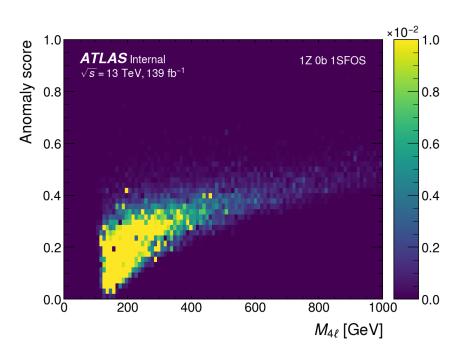


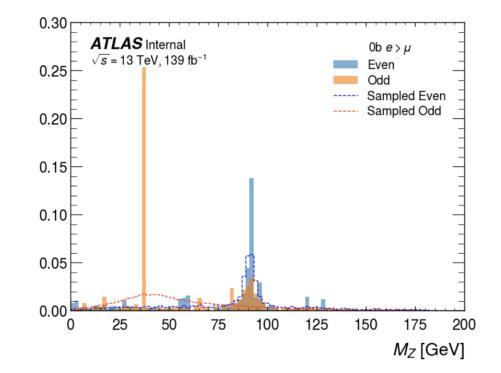
VLL decaying through W/Z/h.



VLL decaying through BSM scalar S.

Sensitivity plots


> We can then use the anomaly score as a discriminating variable, which we can fit to and produce model-dependent limits.

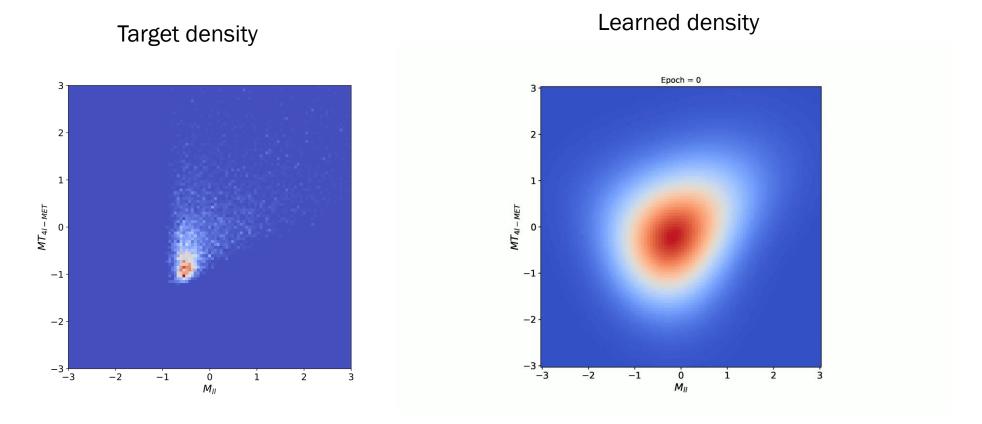


> We can drastically reduce the background count in a model-independent way, and produce competitive limits with the model-dependent search (although not better).

Potential challenges

- > Only searches for 'low-probability' models, what about excesses of background-like events?
- > Reduced expressive-ness, and trouble with discrete inputs.
- > Overfitting to low-statistics:
- Difficult to explain the model's choice of low-probability. Motivates our choices of using physically-motivated input variables.

Summary


- > Anomaly detection provides a way to cover the vast phase space of potential new BSM models.
- > We can use normalising flows to explicitly learn the probability density of the background.
- > We can use them to produce sensitive searches with a wide scope, significantly reducing the background level while remaining signal-agnostic.
- > Several challenges remain with this technique, and the sensitivity is still lower than the ideal scenario, meaning further improvements to model-agnostic searches are still out there.

Backup

Normalising flow trained on background

