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What is anomaly detection?

› Machine learning generally falls under three categories:

1. Supervised learning

› Distinct labels for all examples

2. Semi-supervised learning

› A small number of examples are labelled

3. Unsupervised learning

› No labels

› Anomaly detection is a branch of unsupervised learning, where we try and learn directly from the 
distribution in order to detect outliers. It’s generally split into two themes:
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Outlier detection Over-density detection

Shameless grab from 

David Shih's talk.

https://indico.slac.stanford.edu/event/7540/contributions/5437/attachments/3225/8919/SLAC%20Summer%20Institute%202023%20Lecture%201%20Anomaly%20Detection.pdf


Why do we need anomaly detection?
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› The phase-space of potential BSM models is too large to be covered by dedicated analyses.

› We need a way of casting a broad net, that is sensitive to a range of new physics.   

The picture gets worse when 

including BSM resonances:

arXiv:1610.09392

arXiv:1907.06659

https://arxiv.org/abs/1610.09392
https://arxiv.org/abs/1907.06659


A standard search 
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Pick a signal model 

Generate it with your chosen masses + couplings

Define a specific signal region, where signal 

populates.

Define orthogonal control regions, where signal 

mustn’t populate 

Check modelling in control regions and assume it 

holds in signal regions

Compare the number of recorded events in your 

signal region, with the number you expect from 

your simulation

What if you pick wrong? 

What if your signal populates your 

control regions, or only part of your 

signal regions? 

What if your background modelling 

doesn’t hold across orthogonal 

regions? 

Problems: 



Normalising flows

› We want some model that can take an input z ~ 𝑝𝑧, which is easy to sample, and can generate our complicated 

distribution 𝑝𝑥. We do this by learning an invertible mapping 𝑥 = 𝑓𝜃(𝑧) and z = 𝑓𝜃
−1 𝑥 .
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› We rely on the change of variables formula for probability densities;

𝑝𝑥 𝑥; 𝜃 = 𝑝𝑧 𝑓𝜃
−1 𝑥 |det(

𝜕𝑓𝜃
−1(𝑥)

𝜕𝑥
)|

› In order to use this, we require;

1. Input and output dimensionality is the same

2. The learnt mapping must be invertible

3. The determinant of the Jacobian needs to be tractable (and efficient). 

› There are several ways to ensure 1-3, here we focus on the Real Non-Volume Preserving (RealNVP) model where 
we separate 𝑧 into two disjoint subsets, 𝑧1 and 𝑧2 and then apply two neural networks (𝑠𝜃 , 𝑚𝜃):

𝑥1 = 𝑧1,

𝑥2 = 𝑒𝑠𝜃(𝑧1) +𝑚𝜃(𝑧1)



Normalising flows

› Stacking layers of transforms leads us to a loss function that is allows us to explicitly minimise the 
negative log-likelihood of our input data (𝐷): 

log 𝑝𝑥 𝑥; 𝜃 = log 𝑝𝑧 𝑧0 −෍

𝑖=1

𝑘

log det
𝑑𝑓𝑖

𝑑𝑧𝑖−1
,

ℒ 𝐷 = −
1

𝐷
෍log𝑝𝑥
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Base density Transformed density

Further reading here.

https://lilianweng.github.io/posts/2018-10-13-flow-models/


Model-independent multi-lepton analysis

› Search for new physics in events with ≥4 light leptons (𝑒, 𝜇);

› Gives us a large scope for potential BSM models, as heavy resonances can easily decay through chains that 
produce high lepton multiplicities.  

06/10/2023 Jack Harrison 7



Using normalising flows

› We then train one normalising flow per region, training on our simulated MC background only, before 
evaluating on signal and background. 
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Target density Learned density

Since the normalising flow is a generative 

model, we can check the learnt 

distribution by sampling.



Example signal models:
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𝑠

𝑠

VLL decaying through W/Z/h. VLL decaying through BSM scalar S.



Sensitivity plots

› We can then use the anomaly score as a discriminating variable, which we can fit to and produce model-dependent 
limits. 

› We can drastically reduce the background count in a model-independent way, and produce competitive limits with the 
model-dependent search (although not better). 
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Potential challenges 

› Only searches for ‘low-probability’ models, what about excesses of background-like events? 
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› Reduced expressive-ness, and trouble with discrete inputs.

› Overfitting to low-statistics: 

› Difficult to explain the model’s choice of low-probability. 
Motivates our choices of using physically-motivated input 
variables.



Summary

› Anomaly detection provides a way to cover the vast phase space of potential new BSM models.

› We can use normalising flows to explicitly learn the probability density of the background. 

› We can use them to produce sensitive searches with a wide scope, significantly reducing the background 
level while remaining signal-agnostic.

› Several challenges remain with this technique, and the sensitivity is still lower than the ideal scenario, 
meaning further improvements to model-agnostic searches are still out there.
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Backup



Normalising flow trained on background
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Target density
Learned density
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