

UNIVERSITAT DE BARCELONA

Hristijan Kochankovski

Cross-Collserola PhD Meeting, Barcelona

6 October 2023

EVOLUTION OF STARS

Neutron stars properties

Inner core

- Nuclear matter
 - Leptons
- ??? Pion condensate ???
- ??? Kaon condensate ???

• **???** Hyperons **???**

• ??? Deconfined quark matter???

Hyperons in the neutron stars?

 Hyperons are baryons made of one or more strange quarks

Electroweak decay

 $\Lambda \rightarrow p + \pi^{-}$ $\Lambda \rightarrow n + \pi^{0}$

CAN THEY BE CREATED INSIDE THE STARS?

Hyperons in the neutron stars?

Equation of state (EoS) of inner core

Difficult task – to model the interaction between the strongly interacting particles

THE JOB OF THE NUCLEAR PHYSICS

 $P = P(\rho_B, T, Y_Q)$

$$\mathcal{L} = \sum_{b} \mathcal{L}_{b} + \mathcal{L}_{m} + \sum_{l} \mathcal{L}_{l},$$

$$\mathcal{L}_{b} = \bar{\Psi}_{b}(i\gamma_{\mu}\partial^{\mu} - q_{b}\gamma_{\mu}A^{\mu} - m_{b} + g_{\sigma b}\sigma + g_{\sigma^{*}b}\sigma^{*} - g_{\omega b}\gamma_{\mu}\omega^{\mu} - g_{\rho,b}\gamma_{\mu}\vec{I}_{b}\cdot\vec{\rho}^{\mu})\Psi_{b},$$

$$\mathcal{L}_{m} = \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{\kappa}{3!}(g_{\sigma b}\sigma)^{3} - \frac{\lambda}{4!}(g_{\sigma b})^{4} + \frac{1}{2}\partial_{\mu}\sigma^{*}\partial^{\mu}\sigma^{*} - \frac{1}{2}m_{\sigma^{*}}^{2}\sigma^{*2} - \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{\zeta}{4!}g_{\omega b}^{4}(\omega_{\mu}\omega^{\mu})^{2} - \frac{1}{4}\vec{R}^{\mu\nu}\cdot\vec{R}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu}\cdot\vec{\rho}^{\mu} + \Lambda_{\omega}g_{\rho b}^{2}\vec{\rho}_{\mu}\cdot\vec{\rho}^{\mu}g_{\omega b}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}P^{\mu\nu}P_{\mu\nu} + \frac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu},$$

$$\mathcal{L}_{l} = \bar{\Psi}_{l}(i\gamma_{\mu}\partial^{\mu} - q_{l}\gamma_{\mu}A^{\mu} - m_{l})\Psi_{l},$$

Relativistic mean-field framework

Hyperons thermal signatures on the EoS

Thermal pressure P_{th} $P_{th} = P(T, \rho_B, Y_Q) - P(0, \rho_B, Y_Q)$

The introduction of the hyperons induces a drop in the thermal index MODEL INDEPENDENT FEATURE Homogenous matter at

Charge fraction $Y_0 = 0.1$ and Temperature T = 25 MeV

Binary NS merger simulations and observables

WE CAN LEARN SOMETHING ABOUT THE COMPOSITION FROM THE GRAVITATIONAL WAVE OBSERVABLES

Summary

- Neutron stars are natural laboratories for studying matter at extreme conditions.
- In their deepest layers, exotic components, such as hyperons can appear.
- The appearance of the hyperons has a strong impact on both **cold** and **finite-temperature** EoSs.
- The differences in the thermal contributions are especially important because they may leave a characteristic hyperon signature on the astrophysical observables obtained from neutron star mergers.

UNIVERSITAT DE BARCELONA

Hristijan Kochankovski

Cross-Collserola PhD Meeting, Barcelona

6 October 2023

Hyperons signatures on the EoS

 Although the difference between a hyperonic and non-hyperonic EoS within a given model is big, it is difficult to distinguish them from other nucleonic models

(Large uncertainties in the properties of dense matter)

PASA, 34, e065 (2017)

Hyperons signatures on the EoS

- Different thermal behavior between the hyperonic and the nucleonic EoSs
- We define a quantity that is known as thermal index:

 $\Gamma(T,\rho_B,\beta) = 1 + \frac{P(T,\rho_B,\beta) - P(0,\rho_B,\beta)}{\epsilon(T,\rho_B,\beta) - \epsilon(0,\rho_B,\beta)}$

The introduction of the hyperons induces a drop in the thermal index – MODEL INDEPENDENT FEATURE

EoS of dense matter and relativistic simulations I

- The EoS represents the main input needed for simulating the violent phenomena such as corecollapse supernovae or binary stars mergers.
- The EoS is needed for a wide range of the parameter values:
- Density
- Temperature
- Charge fraction

Signal of hyperons in the GW observables?

 Downside – this result could be obtained from other purely nucleonic EoS model. (it would not be signaling the presence of hyperons)

GW simulations and observables

- The EoS uniquely determine global properties of the stars
- The model also satisfies the constraints from astrophysical observables

dP

dr

dr

Identifying the hyperonic signature

Signal of hyperons in the GW observables? I

- The difference in the frequencies is defined as: $\Delta f = f(3D) - f(2D + \Gamma_{th} = 1.75)$
- All hyperonic models that reach the onset density (density at which the hyperons appear in cold matter) have a positive shift.
- Nucleonic models are grouped around $\Delta f \approx 0$.
- Hyperonic models that do not reach high enough densities are behaving like nucleonic models.

Signal of hyperons in the GW observables? II

 Another useful way to illustrate the hyperonic imprint is to show the following relation

 $f_{peak} = f_{peak} (\Lambda (1.75M_{\odot}))$

- All hyperonic models that have densities above the onset ones predict frequency that lies above the second order polynomial fit of the nucleonic models.
- Most of the hyperonic models also lie above the maximum deviation of the nucleonic models.

