Radio observations of star-forming regions

ICCUB Winter Meeting 2024

PhD supervisors: Gemma Busquet Josep Miquel Girart

Image Credit: NASA, ESA, M. Robberto

Elena Díaz-Márquez

Institute of Space Sciences

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA EXCELENCIA MARÍA DE MAEZTU 2020-2023

Outline _____

Outline _____

Radio emission

& Montmerle (1999) adapted from Feigelson Busquet, ن

Radio emission

 $S_
u \propto
u^lpha$

Non-thermal emission

• Result of electrons in the presence of magnetic fields

Non-thermal emission

- Result of electrons in the presence of magnetic fields
- Detected toward YSOs with an active magnetosphere (gyrosynchrotron radiation)

Non-thermal emission

- Result of electrons in the presence of magnetic fields
- Detected toward YSOs with an active magnetosphere (gyrosynchrotron radiation)
- Can also be generated in protostellar shocks (synchrotron emission)

Non-thermal emission

- Result of electrons in the presence of magnetic fields
- Detected toward YSOs with an active magnetosphere (gyrosynchrotron radiation)
- Can also be generated in protostellar shocks (synchrotron emission) and towards some HII regions

Thermal emission

- Emission from free-free electron encounters
- Can arise from shocks in jets powered by YSOs and also from HII regions

Thermal emission

- Emission from free-free electron encounters
- Can arise from shocks in jets powered by YSOs and also from HII regions
- Other regions, present protoplanetary disks under the influence of external photoevaporation

Outline _____

The targets

The targets

- Part of the extended and massive molecular cloud located at the M17 region (d=1.6 kpc) (*Zucker et al. 2020*)
- Signposts of star formation and rich population of protostars (Wang et al. 2006, Povich & Whitney 2010, Povich et al. 2016)
- Associated with a network of filaments, which result in two different dense hubs (*Busquet et al. 2013, Busquet et al. 2016*)

- Part of the extended and massive molecular cloud located at the M17 region (d=1.6 kpc) (*Zucker et al. 2020*)
- Signposts of star formation and rich population of protostars (Wang et al. 2006, Povich & Whitney 2010, Povich et al. 2016)
- Associated with a network of filaments, which result in two different dense hubs (*Busquet et al. 2013, Busquet et al. 2016*)

G14.2 is a complex and dynamic environment with ongoing star formation activity

VLA observations

- Angular resolution of ~ 0.3"~ 480 au (most extended A configuration)
- Sensitivity of 1.5 µJy/beam at C-band (4-8 GHz; ~6 cm) and 2 µJy/beam at X-band (8-12 GHz; ~3.6 cm)
- Two pointings labelled as G14.2-N and G14.2-S

32 sources in G14.2-N

Stellar population in G14.2

Stellar population in G14.2

Despite the high sensitivity of VLA observations, the fraction of radio detections is low in comparison with the IR and X-ray stellar population

In other regions such as the ONC, there also differences in the distribution of the sources

Counterparts

The number of IR sources compared to the radio sources suggests that sources is Hub-N are in a more advanced evolutionary stage

The IRDC G14.2 _____

We already know that the hubs present differences in the levels of fragmentation (*Busquet et al.*, 2016) and in the magnetic field (*Añez-López et al.*, 2020)

Can we distinguish more differences between the two regions?

We already know that the hubs present differences in the levels of fragmentation (*Busquet et al.*, 2016) and in the magnetic field (*Añez-López et al.*, 2020)

Can we distinguish more differences between the two regions?

G14.2-N

- Sources in a more advanced evolutionary stage
- Dominated by non-thermal emission
- Composed of more massive objects

G14.2-S

- Larger population of objects at an earlier evolutionary stage
- More thermal emitters
- Less compact sources

We already know that the hubs present differences in the levels of fragmentation (*Busquet et al.*, 2016) and in the magnetic field (*Añez-López et al.*, 2020)

Can we distinguish more differences between the two regions?

G14.2-N

- Sources in a more advanced evolutionary stage
- Dominated by non-thermal emission
- Composed of more massive objects

G14.2-S

- Larger population of objects at an earlier evolutionary stage
- More thermal emitters
- Less compact sources

The differences in age and mass seem to be in agreement with the "filament-halo" gradient observed by *Povich et al. (2016)*

The targets

The VLA Orion A Large Survey

Large Project for the JVLA

Global collaboration

PI: G. Busquet, co-PIs: P. Hofner (USA), M. Fernández-López (Argentina), P. Texeira (UK)

Fundación BBVA

*Work produced with the support of a 2022 Leonardo Grant for Researchers in Physics, BBVA Foundation

The VLA Orion A Large Survey

It is the nearest star-forming complex containing within 500 pc

Contains a broad range of environments populated by protostars and YSOs with different masses and evolutionary stages

It harbors high-mass star formation and is strongly interacting with a young OB association

The VLA Orion A Large Survey

It is the nearest star-forming complex containing within 500 pc

Contains a broad range of environments populated by protostars and YSOs with different masses and evolutionary stages

It harbors high-mass star formation and is strongly interacting with a young OB association

Orion A represents a testbed for star formation theories

*https://vols.fqa.ub.edu

Observations

- 306 hours of observing time with the VLA
- C-band (completed) and Ku-band (on-going) observations with the A and B configurations (~120 au): continuum + lines (RRL and masers emission)
- Improve the sensitivity by a factor of 20 compared to previous surveys in Orion (Kounkel et al. 2014)

Observations

- 306 hours of observing time with the VLA
- C-band (completed) and Ku-band (on-going) observations with the A and B configurations (~120 au): continuum + lines (RRL and masers emission)

Großschedl et al. (2019)

vols

The mass-accretion and mass-loss rate

The mass-accretion and mass-loss rate

The mass-accretion and mass-loss rate

• Infall onto the star-disk system from the parental envelope

The mass-accretion and mass-loss rate

- Infall onto the star-disk system from the parental envelope
- Accretion from the disk on the star

The mass-accretion and mass-loss rate

- Infall onto the star-disk system from the parental envelope
- Accretion from the disk on the star
- Energetic **outflows** and **jets** remove angular momentum

The mass-accretion and mass-loss rate

- Infall onto the star-disk system from the parental envelope
- Accretion from the disk on the star
- Energetic **outflows** and **jets** remove angular momentum

The VOLS project aims to investigate how these rates vary with protostellar evolution and how depend on the environment and on the mass of the central object

The mass-accretion and mass-loss rate

The mass-accretion and mass-loss rate

The mass-accretion and mass-loss rate

Radio continuum observations are a powerful tool to investigate this connection

Deep learning implementation

- Source detection and automatic classification of the emission
- Morphology classification using deep learning methods with radio continuum images
- Template for future radio interferometers

Outline _____

Next generation of radio interferometers

SKA

Resolution of 0.08" at 6.7 GHz and 0.04" at 12.5 GHz

Sensitivity 1.3 microJy/beam at 6.7 GHz and 1.2 microJy/beam at 12.5 GHz in 1 hour of observing time

Resolution of 0.2 mas at 30 GHz

Sensitivity of 0.2 - 0.7 microJy/beam in 1 hour of observing time

Next generation of radio interferometers

IRDC G14.2

11 hour for a single pointing at X-band \rightarrow **one hour** of observation Systematic studies of short- and long- term **variability** in radio emissions

These data are going to be a **crucial guide** for future observations

Template for future radio interferometers that will collect **a lot of data**

Thank you for your attention