EXPERIMENTAL OVERVIEW OF LEPTON FLAVOUR UNIVERSALITY TESTS

Alessandra Gioventù

ICC Winter meeting 06/02/24 agioventu@ub.edu

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

The LHCb group at ICCUB

The LHCb analysis group:

- Seniors: Lluis Garrido, Eugeni Graugés Pous, Carla Marín Benito, Ricardo Vázquez Gómez
- **Postdocs:** Lukas Calefice, Alessandra Gioventù
- Ph.D. students: Paula García Moreno, Paloma Laguarta Gonzalez, Aniol Lobo Salvia, Albert Lopez-Huertas, Alejandro Rodríguez Alvarez, Pol Vidrier Villalba

Analysis topics:

- Lepton Flavour Universality (LFU) tests in $b \to c\ell \nu_{\ell}$ and $b \to s\ell\ell$ transitions **This presentation**
- Electroweak penguin decays analyses, $b \rightarrow d\ell \ell$ transitions
- Radiative decays studies
- Electron reconstruction at LHCb

Lepton Flavour Universality

- The SM predicts equal couplings between gauge bosons and the three lepton generations. This is called Lepton Flavour Universality (LFU)
 - Observation of LFU violation \longrightarrow sign of new physics (NP)

Lepton Flavour Universality tests

- Tensions between measurements and SM predictions in $b \rightarrow c$ and $b \rightarrow s$ decays
- Different observables to test LFU:
 - Integrated and differential branching fractions
 - Angular observables → need high statistics
 - Branching fractions of fully leptonic decays such as $BR(B_s \rightarrow \mu^+ \mu^-)$

- Ratio observables
$$R(q^2) = \frac{\mathrm{d}\Gamma^{\ell}}{\mathrm{d}q^2} / \frac{\mathrm{d}\Gamma^{\ell'}}{\mathrm{d}q^2}$$

$$R_{D^*}(q^2) = \frac{\mathrm{d}\Gamma(B \to D^{*-}\tau^+\nu_{\tau})}{\mathrm{d}q^2} \left/ \frac{\mathrm{d}\Gamma(B \to D^{*-}\ell^+\nu_{\ell})}{\mathrm{d}q^2} \right|$$

- Very well predicted
- Cancellation of theoretical and experimental uncertainties in the ratio

 $q^2 = (p_B - p_{D^0})^2$

LHCD A. Gioventù

Main features of LFU tests

Flavour Changing Charged Current (FCCC)

$$b \to c\ell^- \bar{\nu}_\ell$$

 $\ell = \tau$, μ (e only B factories)

- **Tree level** processes. In the SM mediated by a *W* boson
- Potential NP in different couplings between generations
- At least one undetectable ν in the final state

Flavour Changing Neutral Current (FCNC)

$$b \to s\ell^+\ell^-$$
$$\ell = \mu_+ e$$

- Only loop diagrams in SM ⇒ lower
 branching fractions
- Sensitive to either tree or loop NP contributions
- Electrons in the final state

FCNC processes

- LFU tests: definition of $R(H_s)$
- Electron recovery at LHCb
- R(pK)
- $R(H_s)$ measurements status

Tests of LFU in $b \rightarrow s\ell^+\ell^-$ **transitions**

ightarrow Within a given range of di-lepton mass squared, q^2

$$R(H_s)[q_{min}^2, q_{max}^2] = \frac{\int dq^2 \frac{d\Gamma(H_b \to H_s \mu^+ \mu^-)}{dq^2}}{\int dq^2 \frac{d\Gamma(H_b \to H_s e^+ e^-)}{dq^2}}$$

where $H_b = B$, Λ_b^0 and $H_s = K$, K^* , K_S^0 , ϕ , pK

- SM expectation $R(H_s) = 1 \pm \mathcal{O}(1\%)$
- Exploit $r_{J/\psi} = 1 \Rightarrow$ double ratio to reduce systematics:

$$R(H_s) = \frac{BR(H_b \to H_s \mu^+ \mu^-)}{BR(H_b \to H_s J/\psi(\to \mu^+ \mu^-))} \left/ \frac{BR(H_b \to H_s e^+ e^-)}{BR(H_b \to H_s J/\psi(\to e^+ e^-))} \right|$$

 $\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$

 $4 [m(\mu)]^2$

• Electrons and muons \rightarrow different reconstruction

 $a^2 = m^2(\ell t)$

[JHEP 12 040 (2007)] [EPJ C 1676 440 (2016)]

b(2S

 $J/\psi(1S)$

Electron recovery procedure in LHCb

- Electrons lose a large fraction of their energy through
 Bremsstrahlung radiation
- Improve electron energy resolution by using a recovery procedure:
 - Look for photon clusters in the calorimeter compatible with the electron direction before the magnet

R(pK) measurement

• Test LFU in $\Lambda_b^0 \to pK^-\ell^+\ell^-$ decays by measuring the inverse of R(pK):

$$R^{-1}(pK) = \frac{BR(\Lambda_b^0 \to pK^-e^+e^-)}{BR(\Lambda_b^0 \to pK^-J/\psi(\to e^+e^-))} \left/ \frac{BR(\Lambda_b^0 \to pK^-\mu^+\mu^-)}{BR(\Lambda_b^0 \to pK^-J/\psi(\to \mu^+\mu^-))} \right|$$

- First test of LFU using Λ_b^0 baryon
- ► LHCb Run 1+2016 measurement (4.7 fb^{-1}) → Update with full sample (9 fb^{-1})

$R(H_s)$ status

- First measurements of R(K) and $R(K^*)$ performed at B factories: Belle and BaBar
- Several measurements considering different b and s hadrons
- Currently all measurements in agreement with SM predictions

FCCC processes

- Strategies for LFU tests: muonic vs hadronic τ decays
- LHCb measurements:
 - $R(D^{*-})$ with $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau}$
- $R(D^{(*)})$ with $\tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau$ $R(D^{*-})$ and R(D) experimental status

LFU tests with $b \rightarrow c \ell \nu_{\ell}$ **transitions**

- Test LFU by measuring $R(H_c) = \frac{BR(H_b \to H_c \tau^+ \nu_{\tau})}{BR(H_b \to H_c \ell^+ \nu_{\ell})}$ where $H_b = B^0, B_{(c)}^+, \Lambda_b^0, B_s^0, ...$ and $H_c = D^{(*)\pm}, D^0, D_s, \Lambda_c^+, J/\psi, ...$
- Clean theoretical prediction
- $R(H_c)$ deviates from unity due to different lepton masses
- Missing momentum of neutrinos
- ► *B* factories (BaBar and Belle (II)):
 - Consider both $\tau^+ \to e^+ \nu_e \bar{\nu}_{\tau}$ and $\tau^+ \to \mu^+ \nu_{\mu} \bar{\nu}_{\tau}$ decays for the denominator
- LHCb:
 - Muonic decay of the tau: $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$
 - 3-prong decays: $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau}$

Channel	$\mathcal{B}~(imes 10^{-3})$
$\tau^- o \mu^- \overline{\nu}_\mu \nu_\tau$	17.39 ± 0.04
$\tau^- \to e^- \overline{\nu}_e \nu_\tau$	17.82 ± 0.04
$\tau^- \to \pi^- \pi^0 \nu_\tau$	25.49 ± 0.09
$\tau^- \to \pi^- \nu_{\tau}$	10.82 ± 0.05
$\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$	9.02 ± 0.05
$\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	4.49 ± 0.05

 $m_{\tau} \sim \begin{cases} 17 \cdot m_{\mu} \\ 3500 \cdot m_{e} \end{cases}$

τ decays at LHCb

- Same final states for signal and normalisation
- No τ vertex reconstruction
- B-frame approximation $\rightarrow (p_z)_B = \frac{m_B}{m_{D^*\mu}} (p_z)_{D^*\mu}$
- Large partially-reconstructed B backgrounds

- Different final state for signal and normalisation
- τ vertex reconstruction
- Background contributions:
 - **Prompt** $B \rightarrow D_s^{(*)} 3\pi(X)$ decays
 - Doubly charmed inclusive decays, with $H_c \rightarrow 3\pi(X)$

$R(D^*)$ measurement, hadronic τ

- τ reconstructed with 3-prong τ decays $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau}$
- Measure $BR(B^0 \to D^{*-} \tau^+ \nu_{\tau})$ w.r.t. the normalisation mode $B^0 \to D^{*-} \pi^+ \pi^- \pi^+$:

$$K(D^*) = \underbrace{\frac{N_{sig}}{N_{norm}} \cdot \frac{\varepsilon_{norm}}{\varepsilon_{sig}}}_{BR(D^*)} \cdot \underbrace{\frac{1}{BR(\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau})}}_{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}$$

$$K(D^*) = K(D^*) \cdot \underbrace{\frac{BR(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}}_{BR(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

$$External inputs \\
BR(B^0 \to D^{*-} \mu^+ \pi^- \pi^+) = (7.21 \pm 0.29) \cdot 10^{-3} \\
BR(B^0 \to D^{*-} \mu^+ \mu_{\mu}) = (5.05 \pm 0.14) \% \\
BR(\tau^+ \to \pi^+ \pi^- \pi^+ \nu_{\tau}) = (9.02 \pm 0.05) \% \\
BR(\tau^+ \to \pi^+ \pi^- \pi^+ \nu_{\tau}) = (4.49 \pm 0.05) \% \\$$

- Approximations to estimate B and τ momenta
- Largest background channels:
 - **Prompt** $B^0 \to D^{*-}\pi^+\pi^-\pi^+(X)$ background suppressed by $\Delta z > 4\sigma_{\Delta z}$
 - **Doubly charmed** $B \rightarrow D^{*-}D_s^+(\rightarrow 3\pi)(X)$, treated with multivariate analysis (BDT)

Run 1. 3 fb⁻¹: PRD 97 072013

15+16.2 fb⁻¹: PRD108 (2023)

012018

$R(D^*)$ measurement, hadronic τ

- **Normalisation yield** \rightarrow invariant mass fit to $m(D^{*-}3\pi)$
- Signal yield \rightarrow 3D template fit in τ decay time, q^2 and BDT
- Including Run 1 result:

 $R(D^*)_{(2011-2016)} = 0.257 \pm 0.012 \pm 0.014 \pm 0.012$

• Agreement with $R(D^*)_{SM} = 0.254 \pm 0.005$

15+16, , 2 fb⁻¹:

PRD108 (2023) 012018

- Muonic τ decay \rightarrow Same final state for signal and control channel
- B^0 boost along z axis \gg boost of decay products in B^0 rest frame \rightarrow $(p_z)_B = \frac{m_B}{m_{D^*\mu}} (p_z)_{D^*\mu}$
- Main background partially reconstructed muons
- $R(D_s^{*-})$ measurement (ICCUB) \rightarrow Analogue strategy with $B_s^0 \rightarrow D_s^{*-} \tau^+ \nu_{\tau}$ decays

$R(D^*)$ and R(D) measurement $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$

- Separation of τ and μ channels via a 3D binned template fit to data:
 - $q^2 = (p_B p_{D^*})^2$
 - $m_{\rm miss}^2 = (p_B p_{D^*} p_{\mu})^2$
 - μ energy in the *B* rest frame, E^*_{μ}

Global picture

• Combined R(D) and $R(D^*)$ measurement in tensions with SM predictions by 3.2σ

PROSPECTS AND CONCLUSIONS

Future prospects

- Several analyses ongoing with larger data samples
 - Reduce data-driven systematics and statistical uncertainties
- Expect new results from Belle II
- LHCb Upgrade I detector started Run 3 in 2022
- Starting new projects at ICCUB on $b \rightarrow d\ell \ell$ transitions related to the ERC-CLIMB

18

16

14

12

10

8

6

Pessimistic

Belle II unofficial

2025

505

Total uncertainty [%]

- Perform Lepton Flavour Universality tests to probe the SM
- Several measurements considering both $b \to s\ell^+\ell^-$ and $b \to c\ell^-\bar{\nu}_\ell$ transitions
 - No observation of LFU violation at 5 standard deviations
- The global average of R(D)-R(D*) combination is in tension with the SM by 3.2σ
- New measurements \rightarrow more hints on the LFU puzzle
- The LHCb group of ICCUB has a central role in LFU tests

THANK YOU

BACKUP

The LHCb detector

- Large amount of b and c hadrons produced, $\sigma_b = (144 \pm 1 \pm 21) \mu b$ at 13 TeV
- Forward spectrometer for b- and c-hadron decays ($2 < \eta < 5$)
 - Good vertex and impact parameter resolution ($\sigma(\text{IP}) \sim 20 \ \mu\text{m}$)
 - Excellent momentum resolution ($\delta p/p = [0.5 1] \% p < 200 \text{ GeV}$)
 - Excellent charged particle identification (μ ID 97% for ($\mu \rightarrow \pi$) misID of 1-3%)
 - Capability for neutral identification

Angular observables in $B^0 \rightarrow K^{*0} \mu^- \mu^+$

- The decay is governed by the angles θ_l, ϕ, θ_K (angular analysis) and the squared momentum transfer to the dilepton system q^2
- At $q^2 = 0$ the two leptons are at rest.
- Usually lower values of q^2 have less uncertainties from the theory \Rightarrow many observables are measured on the low q^2 region.

Differential branching fractions

- Measurements of differential branching fractions of $b \rightarrow s\mu^+\mu^-$ transitions
- Below SM predictions

LHCD A. Gioventù

R(D) and $R(D^*)$ status

 $B_s \rightarrow D_s^{*+} \mu^+ \nu_{\mu}$ FF measurement at LHCb

• Analysis of the $B_s \to D_s^{*+} \mu^+ \nu_{\mu}$ hadronic form factors and measurement of $R(D_s^{*+})$.

LFU tests in charm sector

- Measurements of $c \to s\ell^+\nu_\ell$ and $c \to d\ell^+\nu_\ell$ transitions $\to R_{\mu/e} = \frac{BR(D^0 \to K^-\mu^+\nu_\mu)}{BR(D^0 \to K^-e^+\nu_e)}$
- BESIII results are compatible with the SM predictions within 2σ
- Lattice prediction: $R_{\mu/e} = 0.9779 \pm 0.0002(\text{latt}) \pm 0.0050(\text{EM})$

Experimental overview of LFU tests

 $q^2 = (p_{D^0} - p_K)^2$

R(*K*^(*)) measurement

Mass fit. Muon mode

PRD 108 (2023) 032002

<u>LHCb</u> A. Gioventù

Experimental overview of LFU tests

06/02/24 31

Nik[hef

R(*K*^(*)) measurement

Mass fit. Electron mode

PRD 108 (2023) 032002

Experimental overview of LFU tests

06/02/24 Nikhef