$b \rightarrow c\tau^- \bar{\nu}_{\tau}$ semileptonic decays: visible distributions and tests of Lepton Flavour Universality

NEUS PENALVA MARTÍNEZ

ICCUB Winter Meeting Wednesday, 7 February 2024

<u>Outline</u>

- 1. Introduction
 - i. The SM and LFU
 - ii. $b \rightarrow c \tau \bar{\nu}_{\tau}$ decays
- 2. Tensor formalism
 - i. General formalism: the hadronic tensors
 - ii. General expressions

- 3. Observables
 - i. τ kinematics
 - ii. Visible kinematics
- 4. Final remarks

Standard model

- Describes all known fundamental particles in nature and their interactions.
- Elementary particles
 - Fermions:
 - Three families of quarks and leptons
 - Bosons
 - Gluons (strong force mediators)
 - Photon (electromagnetism mediator)
 - Z and W (weak force mediators)
 - Higgs boson

Lepton Flavour Universality

- Lepton Flavour Universality:
 - The coupling of the gauge bosons to the leptons is flavour independent.
 - The SM predictions should be the same for all 3 families of leptons except for mass effects.

LFU Violation in $b \rightarrow c\tau \bar{\nu}_{\tau}$ decays?

- Combined results for $\mathcal{R}(D), \mathcal{R}(D^*)$ show a ~ 3σ deviation from the SM.¹
- Deviations also in $\mathcal{R}(\Lambda_c)$ and other observables as $P_{\tau}(D^*)$ and $F_L^{D^*}$.

(see <u>Alessandra's talk</u> from yesterday)

$$\mathcal{R}(H_c) = \frac{\Gamma(H_b \to H_c \tau \bar{\nu_{\tau}})}{\Gamma(H_b \to H_c \ell \bar{\nu_{\ell}})} = 1 + \text{mass corrections};$$

$$H_b \to H_c = \bar{B} \to D, \ \bar{B} \to D^*, \ \Lambda_b \to \Lambda_c ...$$

 $\ell = e, \mu$

Effective Hamiltonian

One way of adding NP effects is considering the most general effective Hamiltonian:

$$\begin{split} H_{\text{eff}} &= \frac{4G_F V_{cb}}{\sqrt{2}} \Big[(1 + \underbrace{C_{LL}^V) \mathcal{O}_{LL}^V}_{(\text{axial-)vector}} + \underbrace{C_{LL}^S \mathcal{O}_{RL}^S}_{(\text{pseudo-)scalar}} + \underbrace{C_{LL}^T \mathcal{O}_{RL}^T}_{\text{tensor}} + \underbrace{C_{LR}^V \mathcal{O}_{LR}^V + C_{RR}^V \mathcal{O}_{RR}^V + C_{LR}^S \mathcal{O}_{LR}^S + C_{RR}^S \mathcal{O}_{RR}^S + C_{RR}^T \mathcal{O}_{RR}^T}_{\text{right-handed neutrinos}} \Big] + h.c., \end{split}$$

- $\mathcal{R}(D), \mathcal{R}(D^*)$ expressions depend on these C_{ij}^{Γ} .
- Different sets of C_{ij}^{Γ} (NP models) are fitted to the anomalies observed in the semileptonic B-meson decays.
- We need more observables/measures to distinguish among these models.

Objectives

- Developing a general formalism for studying $b \rightarrow c$ semileptonic decays.
- Applying the formalism to several hadronic transitions both in the meson and in the baryon sectors.
- Looking for observables that distinguish among different NP models/fits that provide same values for $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$. We'll show some predictions using fits from several works:
 - Murgui et al. JHEP 09 (2019) 103
 - Mandal et al. JHEP 08 (2020) 022
 - Shi et al., JHEP 12 (2019) 065

<u>Tensor</u> formalism

- General formalism: the hadronic tensors
- General expressions

- We want to compute decay widths and other related observables.
 ⇒ Computing squared amplitudes.
- With the tensor formalism it can be done in a general way
 - It works for any hadronic decay
 - Can be applied to other quark transitions $(s \to u \, \ell^- \overline{\nu_\ell}, c \to d \, \ell^+ \nu_\ell, \overline{b} \to \overline{c} \, \ell^+ \nu_\ell)$
 - Sums over the hadron spins but considers the most general polarization state of the τ

<u>NP, Hernández, Nieves.</u> <u>*Phys.Rev.D* 100 (2019) 11, 113007</u>; <u>*Phys.Rev.D* 101 (2020) 11, 113004; <u>JHEP 10 (2021) 122</u></u>

Squared amplitude

Using the previous Hamiltonian the amplitude has the form:

$$\mathcal{M} = \left(J_H^{\alpha} J_{\alpha}^L + J_H J^L + J_H^{\alpha\beta} J_{\alpha\beta}^L\right)_{\bar{\nu}_{\ell L}} + \left(J_H^{\alpha} J_{\alpha}^L + J_H J^L + J_H^{\alpha\beta} J_{\alpha\beta}^L\right)_{\bar{\nu}_{\ell R}}$$

Hadronic matrix elements

- Depend on the considered hadrons
- Difficult to compute: Form Factor parametrization

Leptonic currents

- Have into account the lepton polarization
- Easy to compute

The expressions for $|\mathcal{M}|^2$ and the observables depend on the form factors and are different for each hadronic transition.

Hadronic tensors

What we do: Separating the squared amplitude in leptonic and hadronic tensors

$$\overline{\sum} |\mathcal{M}|^2 = \sum_{\chi=L,R} \left[\sum_{(\alpha\beta)(\rho\lambda)} L_{(\alpha\beta)(\rho\lambda)}(k,k',h_{\chi}) W_{\chi}^{(\alpha\beta)(\rho\lambda)}(p,q) \right]$$

The hadronic tensors can be decomposed in linear combinations of Lorentz structures using Lorentz, parity and time-reversal transformations.

- This decomposition is general for all decays.
- At most quadratic in q and p.
- The coefficients multiplying the Lorentz tensors are scalars $(W_i(q^2))$ called structure functions (SFs).

• There are 16 SFs for each neutrino chirality and are functions of q^2 or ω and the WCs.

The observables depend on the structure functions and are general.

An example: The Standard Model

The SM hadronic tensor is given by:

$$W^{\mu\nu}(p,q) = -g^{\mu\nu}W_1 + \frac{p^{\mu}p^{\nu}}{M^2}W_2 + i\epsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}\frac{W_3}{2M^2} + \frac{q^{\mu}q^{\nu}}{M^2}W_4 + \frac{p^{\mu}q^{\nu} + p^{\nu}q^{\mu}}{2M^2}W_5,$$

An therefore the square matrix element:

$$\frac{2\overline{\sum}|\mathcal{M}|^2}{M^2} = \frac{1}{2} \Big[\mathcal{A}(\omega) + \mathcal{B}(\omega) \frac{(k \cdot p)}{M^2} + \mathcal{C}(\omega) \frac{(k \cdot p)^2}{M^4} \Big]$$

$$\mathcal{A}(\omega) = \frac{q^2 - m_\ell^2}{M^2} \Big\{ 2W_1 - W_2 + \frac{M_\omega}{M} W_3 + \frac{m_\ell^2}{M^2} W_4 \Big\},$$

$$\mathcal{B}(\omega) = -\frac{2q^2}{M^2} W_3 + \frac{4M_\omega}{M} W_2 + \frac{2m_\ell^2}{M^2} W_5,$$

$$\mathcal{C}(\omega) = -4W_2.$$

General expressions

There are 10 combinations of the SFs.

$$\begin{split} & \text{Non-polarized} \\ & \text{case} \quad \left\{ \mathcal{N}(\omega, k \cdot p) = \frac{1}{2} \Big[\mathcal{A}(\omega) + \mathcal{B}(\omega) \frac{(k \cdot p)}{M^2} + \mathcal{C}(\omega) \frac{(k \cdot p)^2}{M^4} \Big], \\ & \text{Defined } \tau \\ & \text{polarization} \quad \left\{ \begin{array}{l} \mathcal{N}_{\mathcal{H}_1}(\omega, k \cdot p) = \mathcal{A}_{\mathcal{H}}(\omega) + \mathcal{C}_{\mathcal{H}}(\omega) \frac{(k \cdot p)}{M^2}, \\ \mathcal{N}_{\mathcal{H}_2}(\omega, k \cdot p) = \mathcal{B}_{\mathcal{H}}(\omega) + \mathcal{D}_{\mathcal{H}}(\omega) \frac{(k \cdot p)}{M^2} + \mathcal{E}_{\mathcal{H}}(\omega) \frac{(k \cdot p)^2}{M^4}, \\ \mathcal{N}_{\mathcal{H}_3}(\omega, k \cdot p) = \mathcal{F}_{\mathcal{H}}(\omega) + \mathcal{G}_{\mathcal{H}}(\omega) \frac{(k \cdot p)}{M^2}. \end{split} \right. \end{split}$$

Figure: Differential $d\Gamma/d\omega$ distributions for the unpolarized $\Lambda_b \rightarrow \Lambda_c \tau \bar{\nu}_{\tau}$ semileptonic decay.

 $b \rightarrow c$ semileptonic decays: visible distributions and tests of LFU

Observables

- Tau kinematics
- Visible kinematics

- Things that can be measured:
 - Decay widths and angular or energy distributions
 - Angular and spin asymmetries
- They will depend on the particles'
 - Energy
 - Direction
 - Polarization

For example, one can measure

$$\frac{d^2\Gamma}{d\omega ds_{13}} = \Gamma_0 \overline{\sum} |\mathcal{M}|^2, \qquad \Gamma_0 = \frac{G_F^2 |V_{cb}|^2 M'^2}{(2\pi)^3 M},$$
$$\omega = \frac{M^2 + M'^2 - q^2}{2MM'}, \quad q^2 = (p - p')^2, \quad s_{13} = (p - k)^2$$

τ kinematics

CM frame

- $\vec{p} \vec{p}' = 0$
- s_{13} depends on $\cos \theta_{\ell}$
- Angular distribution:
 - 3 non-polarized functions
 - 3 polarized functions

LAB frame

• $\vec{p} = 0$

- s_{13} depends on E_{ℓ}
- Energy distribution
 - 3 non-polarized functions
 - 4 polarized functions

$$\frac{d\Gamma}{d\omega ds_{13}}$$

$$\mathsf{CM} \downarrow$$

$$\frac{d^2\Gamma}{d\omega d\cos\theta_\ell} = \frac{\Gamma_0 M^3 M'}{2} \sqrt{\omega^2 - 1} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \Big\{a_0(\omega, h) + a_1(\omega, h)\cos\theta_\ell + a_2(\omega, h)\cos^2\theta_\ell\Big\},$$

<u>CM (of $\ell \bar{v}_{\ell}$) distributions</u>

		Unpolarized	Polarized
	CM frame	a_0, a_1, a_2	$a_0(h = -1), a_1(h = -1),$ $a_2(h = -1)$
	LAB frame	C_0, C_1, C_2	$\hat{c}_0, \hat{c}_1, \hat{c}_2, \hat{c}_3$
	Total	$\mathcal{A},\mathcal{B},\mathcal{C}$	$\mathcal{A}_{\mathcal{H}}$, $\mathcal{B}_{\mathcal{H}}$, $\mathcal{C}_{\mathcal{H}}$, $\mathcal{D}_{\mathcal{H}}$, $\mathcal{E}_{\mathcal{H}}$

 \mathbf{x}

She

Visible kinematics

- One would need to measure the outgoing τ 4-momentum and polarization state.
- The au does not travel far and in any case determining the polarization is challenging.
- Its decay involves at least one more neutrino \rightarrow Difficult to reconstruct.
- Solution: relying on the variables of the au decay charged products.

Visible kinematics in the CM frame

We rely on the kinematical variables of the visible products (μ , π and ρ)

 $\frac{d^3\Gamma_d}{d\omega d\xi_d d\cos\theta_d}$

 $\cos \theta_d$: angle between the charged particle and the final hadron

 ξ_d : proportional to the energy of the charged particle in the CM frame

Figure: Kinematics in the $\tau^- \bar{\nu}_{\tau}$ CM reference system and the unit vectors $\overrightarrow{(n_L, n_T)}$ and $\overrightarrow{n_{TT}}$).

8 of the 10 (\mathcal{A} , \mathcal{B} , \mathcal{C} , $\mathcal{A}_{\mathcal{H}}$, ...) observables can be accessed from this differential decay width.

We loose the information on the CP violating asymmetries when we integrate on ϕ_d .

07/02/2024

4(5)-body distribution

The $H_b \rightarrow H_c \tau (\rightarrow d\nu_\tau) \bar{\nu}_\tau$ differential decay rate:

$$\frac{d^{3}\Gamma_{d}}{d\omega d\xi_{d} d\cos\theta_{d}} = \mathcal{B}_{d} \frac{d\Gamma_{\rm SL}}{d\omega} \Big\{ F_{0}^{d}(\omega,\xi_{d}) + F_{1}^{d}(\omega,\xi_{d})\cos\theta_{d} + F_{2}^{d}(\omega,\xi_{d})P_{2}(\cos\theta_{d}) \Big\},$$

where

$$F_{0}(\omega,\xi_{d}) = C_{n}(\omega,\xi_{d}) + C_{P_{L}}(\omega,\xi_{d})\langle P_{L}^{\mathrm{CM}}\rangle(\omega)$$

$$F_{1}(\omega,\xi_{d}) = C_{A_{FB}}(\omega,\xi_{d})A_{FB}(\omega) + C_{Z_{L}}(\omega,\xi_{d})Z_{L}(\omega) + C_{P_{T}}(\omega,\xi_{d})\langle P_{T}^{\mathrm{CM}}\rangle(\omega)$$

$$F_{2}(\omega,\xi_{d}) = C_{A_{Q}}(\omega,\xi_{d})A_{Q}(\omega) + C_{Z_{Q}}(\omega,\xi_{d})Z_{Q}(\omega) + C_{Z_{\perp}}(\omega,\xi_{d})Z_{\perp}(\omega).$$

07/02/2024

τ angular, spin and angular-spin asymmetries

Figure: $n_0(\omega)$ and the full set of tau angular, spin and spin angular asymmetries introduced before, as a function of ω , for the $\Lambda_b \to \Lambda_c \tau^- \bar{\nu}_{\tau}$ decay.

Partially integrated visible distributions

We integrate some of the variables to increase statistics

The normalized $d\Gamma/dE_d$ distribution

The only surviving term is:

$$\widehat{F}_0^d(E_d) = \frac{1}{\Gamma_{\rm SL}} \int_1^{\omega_{\rm sup}(E_d)} \frac{1}{\gamma} \frac{d\Gamma_{\rm SL}}{d\omega} \Big\{ C_n^d(\omega, E_d) + C_{P_L}^d(\omega, E_d) \, \langle P_L^{\rm CM} \rangle(\omega) \Big\} \, d\omega,$$

Figure: Energy $d\Gamma/dE_d$ distribution for the $\Lambda_b \to \Lambda_c \tau v_{\tau}$ decay and each of the τ decay modes.

The $d\Gamma/(d \cos \theta_d)$ distribution

We loose the information on $\langle \mathcal{P}_L^{CM} \rangle$ but not in the remaining asymmetries.

$$\frac{d\Gamma_d}{d\cos\theta_d} = \mathcal{B}_d\Gamma_{\rm SL}\Big[\frac{1}{2} + \widehat{F}_1^d\cos\theta_d + \widehat{F}_2^d P_2(\cos\theta_d)\Big].$$

Figure: Angular $d\Gamma/d \cos \theta_d$ distribution for the $\Lambda_b \to \Lambda_c$ decay and each of the τ decay modes.

Final remarks

• We have proposed different observables that are sensitive to NP effects, which we have computed for different extensions of the SM.

• If the LFU anomalies observed in semileptonic B meson decays are confirmed, we still need to combine as many observables and decays as possible, in order to determine the preferred NP extension of the SM.

