

Examining the Standard Solar Models in face of new Solar neutrino data

M. C. Gonzalez-Garcia, Michele Maltoni, Joao Paulo Pinheiro*, Aldo Serenelli

Departament de Física Quántica i Astrofísica and Institut de Cíencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

*joaopaulo.pinheiro@fqa.ub.edu

pp-chain vs CNO cycle

pp-chain(reaction A<8)

CNO-cycle(catalyst)

João Paulo Pinheiro(UB)

Neutrino spectrum

João Paulo Pinheiro(UB)

3

Solar Neutrinos vs Solar photons

From philschatz.com

100,000 years

8 minutes

João Paulo Pinheiro(UB)

Standard Solar Models Bahcall et al:astro-ph/0010346

-Give information about the atomic composition of the Sun;

-Information can be extracted from the atmosphere of the Sun(photons) or from the nucleus of the Sun(neutrinos);

https://physics.aps.org/articles/v15/190

Solar composition problem! Garay and Serenelli:astro-ph/0811.2424

AGS models (Asplund, Grevesse and Sauval 0909.0948)

-Solar surface composition using spectroscopic technics;
-3D hydrodynamic models of solar atmosphere;
-Low Z in the solar interior;
-Fail to reproduce all helioseismic probes; **GS models** (Grevesse, N., Sauval, Space Science Reviews 85, 161– 174 (1998), Garay and Serenelli 1211.6740)

-Helioseismology measurements such as the radial distributions of sound speed and density -Determination of nuclear reaction rates affecting energy and neutrino production in the Sun;

-**High Z**;

-Fail to modulate the atmosphere of the Sun;

Borexino phase III

Our reproduction of BXIII

Borexino III and the CNO-cycle

Our results

Preference for High Metallicity!

Borexino col., hep-exp:2205.15975

10

Our results

- They were not precise enough to provide a significant discrimination;

FIT	B23-SSM	FULL			Be+B+CNO			CNO		
1		n=6			n=3			n=1		
CNO-Rfixed		$\Delta \chi^2$	$p_{\rm GF}$	CL $[\sigma]$	$\Delta \chi^2$	$p_{\rm GF}$	CL $[\sigma]$	$\Delta \chi^2$	$p_{ m GF}$	CL $[\sigma]$
	AGSS09-met	14.5	0.024	2.3	9.8	0.020	2.3	7.2	0.0073	2.7
	GS98	8.1	0.24	1.2	3.0	0.39	0.86	2.4	0.12	1.5
	AAG21	12.5	0.052	1.9	7.8	0.05	2.0	6.2	0.013	2.5
	MB22-met/phot	7.1	0.31	1.0	2.2	0.53	0.62	2.0	0.16	1.4
CNO-Rbound		n=8			n=5			n=3		
		$\Delta \chi^2$	$p_{\rm GF}$	CL $[\sigma]$	$\Delta \chi^2$	$p_{\rm GF}$	CL $[\sigma]$	$\Delta \chi^2$	$p_{\rm GF}$	CL $[\sigma]$
	AGSS09-met	14.4	0.072	1.8	9.5	0.091	1.7	7.5	0.057	1.9
	GS98	6.8	0.56	0.58	1.9	0.86	0.17	1.6	0.66	0.44
	AAG21	11.9	0.15	1.4	7.0	0.22	1.2	6.1	0.11	1.6
	MB22-met/phot	6.1	0.64	0.47	1.2	0.94	0.07	1.1	0.78	0.28

Possible solution:

Sun's chemical composition varies with depth:

The Sun having formed in an inhomogeneous environment, or by the Sun's outer layers having been enriched in certain elements by accretion of planetary material

Serenelli, Haxton and Pena-Garay: astro-ph:1104.1639

Kunitomo, Guillot and Buldgen: astro-ph:2210.06900

Thank you!

"This project has received funding /support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska -Curie grant agreement No 860881-HIDDeN"

UNIVERSITAT DE BARCELONA

BACKUP SLIDES

Gallium experiment

Gallium based solar-neutrinos were designed to detect pp neutrinos from the Sun.

-Excess of electron – neutrino events;
-Tension with other Solar neutrino experiments;
-Problems to calculate the Matrix elements of the amplitude – tension can be reduced;

João Paulo Pinheiro(UB)

Solar vs Gallium

Kopp at al, hep-ph:2303.05528

João Paulo Pinheiro(UB)

16

Letting the GA cross section and the pp flux free changes something?

Answer: No!

Details in the backup slides...

The tension continues...

BXII+BXIII+(8B+hep constraint)

BXII+BXIII+(8B+hep constraint) +effGA=1

BXII+BXIII+(8B+hep constraint) +effGA=free

