# Probing cosmic inflation via gravitational waves

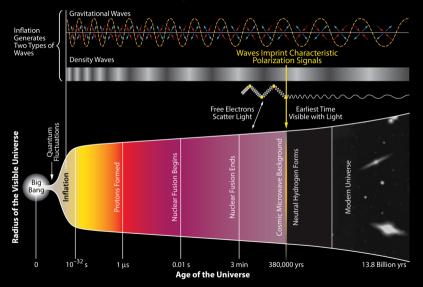
# Mohammad Ali Gorji

ICCUB Winter Meeting 2024 [February 6-7, 2024]

February 6, 2024



#### **History of the Universe**



From cosmological observations like Type Ia supernova and cosmic microwave background (CMB) radiation:

$$\Omega_k|_{t=t_0}=|\Omega_{\rm tot}-1|_{t=t_0}<1$$

Why our Universe is flat?

From cosmological observations like Type Ia supernova and cosmic microwave background (CMB) radiation:

$$\Omega_k|_{t=t_0}=|\Omega_{\rm tot}-1|_{t=t_0}<1$$

Why our Universe is flat?

- Big bang nucleosynthesis:  $|\Omega_{
  m tot} 1|_{t=1s} < 10^{-18}$
- Electroweak SB scale:  $|\Omega_{
  m tot}-1|_{t=10^{-12}s} < 10^{-30}$

From cosmological observations like Type Ia supernova and cosmic microwave background (CMB) radiation:

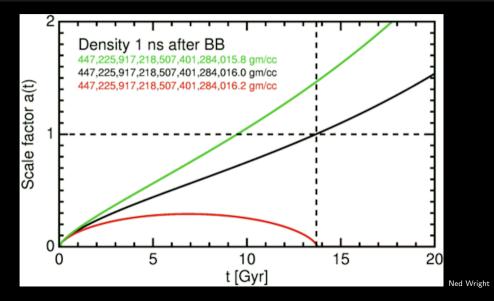
$$\Omega_k|_{t=t_0} = |\Omega_{ ext{tot}} - 1|_{t=t_0} < 1$$

Why our Universe is flat?

- Big bang nucleosynthesis:  $|\Omega_{
  m tot} 1|_{t=1s} < 10^{-18}$
- Electroweak SB scale:  $|\Omega_{\mathrm{tot}} 1|_{t=10^{-12}s} < 10^{-30}$

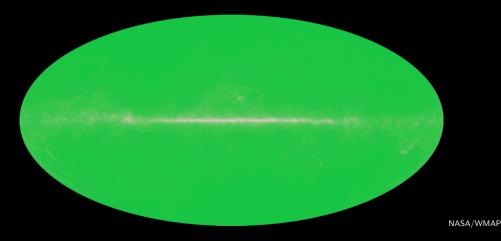
At the Big bang nucleosynthesis we need a fine tuning:

#### Flatness problem



#### Horizon problem

# Why the opposite sides of the universe have the same temperature of $T\simeq 2.7$ K?



#### Solution to the Big Bang problems

# A short rapid accelerated expansion at early times can solve the horizon and flatness problems

• Flatness (problem): Inflation sets

 $|\Omega_{\rm tot}| \rightarrow 1.0000000000...$ 

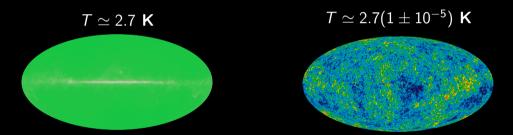
at early times.

• Horizon (problem):

The whole observable universe are created from one causally connected region through the rapid exponential inflationary expansion.

#### Inflation

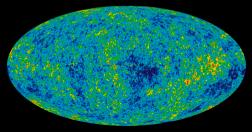
# Inflation also explains the origin of the structures in the Universe



We need small inhomogeneities as a seed for the observed structures in the universe like stars, galaxies, clusters, ···

The superhorizon curvature perturbation generates temperature fluctuations on CMB

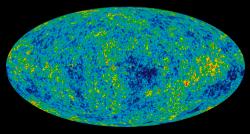
$$\langle \mathcal{RR} \rangle \propto \left\langle \frac{\delta T}{T} \frac{\delta T}{T} \right\rangle$$



NASA/WMAP

The superhorizon curvature perturbation generates temperature fluctuations on CMB

 $\langle \mathcal{RR} \rangle \propto \left\langle \frac{\delta T}{T} \frac{\delta T}{T} \right\rangle$ 



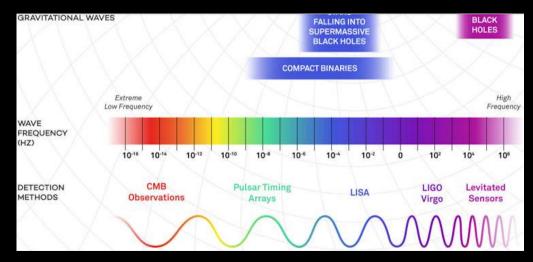
#### Curvature perturbations:

 $\begin{array}{l} \langle \mathcal{R}\mathcal{R} \rangle \propto \mathcal{P}_{\mathcal{R}} = A_{S} \left( k/k_{*} \right)^{n_{S}-1} \\ A_{S} = \mathcal{O} \left( 10^{-9} \right), \ n_{S} - 1 = -\mathcal{O} \left( 10^{-2} \right) \\ \text{Metric tensor perturbations} \\ \textbf{(GWs):} \\ \mathcal{P}_{h} = r A_{S} \left( k/k_{*} \right)^{-r/8} \\ r < \mathcal{O} \left( 10^{-2} \right) \end{array}$ 

Inflation generates <u>almost Gaussian</u>, <u>almost scale-invariant</u>, and <u>almost adiabatic</u> perturbations

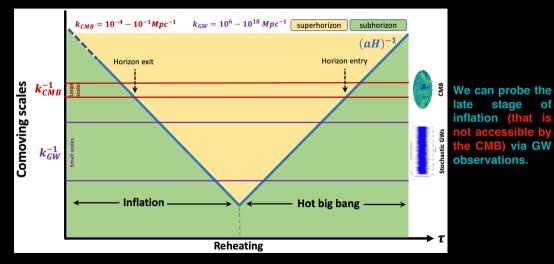
NASA/WMAP

#### Gravitational wave detectors frequency bounds

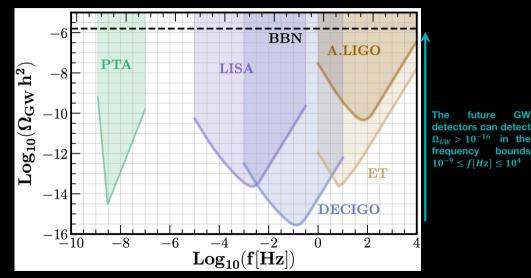


Credit:https://phys.org

 $\begin{array}{ll} \mbox{CMB scales:} & 10^{-4} \lesssim k_{CMB} \lesssim 10^{-1} \mbox{Mpc}^{-1} / 10^{-19} \lesssim f \lesssim 10^{-16} \mbox{Hz} \\ \mbox{GWs scales:} & 10^{6} \lesssim k_{GW} \lesssim 10^{18} \mbox{Mpc}^{-1} / 10^{-8} \lesssim f \lesssim 10^{3} \mbox{ Hz} \end{array}$ 



#### Gravitational wave detectors



Credit:G. Domenech, arXiv:2109.01398

GW

#### Stochastic GWs with primordial origin

Spectral density of GWs:

$$\Omega_{\rm GW} = \frac{1}{12} \Omega_{0,\mathsf{r}} \mathcal{P}_{\mathsf{h}} = \mathcal{O}(10^{-5}) \mathcal{P}_{\mathsf{h}}$$

• At CMB scales  $k \sim k_{CMB}$ ,  $\mathcal{P}_h \sim r \mathcal{P}_R \lesssim 10^{-11}$ . Since the power spectra are almost scale-invariant and red-tilted,  $\mathcal{P}_h < 10^{-11}$  at  $k \sim k_{GW}$  giving

 $\Omega_{\rm GW}^{\rm pri} < 10^{-16}$ 

• Scalar perturbations contribute since  $\mathcal{P}_h^{\mathrm{induced}} \sim \mathcal{P}_R^2$  (nonlinear interaction) and similarly  $\mathcal{P}_R < 10^{-9}$  at  $k \sim k_{GW}$  giving

$$\Omega_{
m GW}^{
m induced} < 10^{-23}$$

The sensitivity of future GW detectors might reach  $\Omega_{\rm GW} = \mathcal{O}(10^{-16})$  (very optimistic). So,  $\Omega_{\rm GW}^{\rm pri}$  and  $\Omega_{\rm GW}^{\rm induced}$  are too small to be detected by GW detectors.

# Contribution of primordial tensor and scalar perturbations to stochastic GWs in too small to be detected by GW detectors.

### Spectral density of GWs:

 $\Omega_{\rm GW}^{\rm induced} = \mathcal{O}(10^{-5}) \mathcal{P}_{\mathcal{R}}^2$ 

At CMB scales  $k \sim k_{CMB}$ ,  $\mathcal{P}_{\mathcal{R}} \sim 10^{-9}$ . If power spectrum be scale-dependent such that  $\mathcal{P}_{\mathcal{R}} \gg \mathcal{P}_{\mathcal{R}}$  where  $\mathcal{P}_{\mathcal{R}}$  is the power spectrum at GW scale  $k \sim k_{GW}$ , one may achieve

 $\Omega_{
m GW}^{
m induced}\gtrsim {\cal O}(10^{-16})$ 

which is large enough to be detected by the GW detectors. Thus,  $\mathcal{P}_{\mathcal{R}}\gtrsim 10^{-5}$  is needed which means the initial power spectrum  $\mathcal{P}_{\mathcal{R}}\sim 10^{-9}$  should be enhanced at least by "four orders of magnitude" at small scales.

### Spectral density of GWs:

 $\Omega_{\rm GW}^{\rm induced} = \mathcal{O}(10^{-5}) \mathcal{P}_{\mathcal{R}}^2$ 

At CMB scales  $k \sim k_{CMB}$ ,  $\mathcal{P}_{\mathcal{R}} \sim 10^{-9}$ . If power spectrum be scale-dependent such that  $\mathcal{P}_{\mathcal{R}} \gg \mathcal{P}_{\mathcal{R}}$  where  $\mathcal{P}_{\mathcal{R}}$  is the power spectrum at GW scale  $k \sim k_{GW}$ , one may achieve

 $\Omega_{
m GW}^{
m induced}\gtrsim {\cal O}(10^{-16})$ 

which is large enough to be detected by the GW detectors. Thus,  $\mathcal{P}_{\mathcal{R}}\gtrsim 10^{-5}$  is needed which means the initial power spectrum  $\mathcal{P}_{\mathcal{R}}\sim 10^{-9}$  should be enhanced at least by "four orders of magnitude" at small scales.

Why  $\Omega^{\rm induced}_{\rm GW}$  is proportional to  $\mathcal{P}^2_{\mathcal{R}}$ ?

# Spectral density of GWs:

 $\Omega_{\rm GW}^{\rm induced} = \mathcal{O}(10^{-5}) \mathcal{P}_{\mathcal{R}}^2$ 

At CMB scales  $k \sim k_{CMB}$ ,  $\mathcal{P}_{\mathcal{R}} \sim 10^{-9}$ . If power spectrum be scale-dependent such that  $\mathcal{P}_{\mathcal{R}} \gg \mathcal{P}_{\mathcal{R}}$  where  $\mathcal{P}_{\mathcal{R}}$  is the power spectrum at GW scale  $k \sim k_{GW}$ , one may achieve

 $\Omega_{
m GW}^{
m induced}\gtrsim {\cal O}(10^{-16})$ 

which is large enough to be detected by the GW detectors. Thus,  $\mathcal{P}_{\mathcal{R}}\gtrsim 10^{-5}$  is needed which means the initial power spectrum  $\mathcal{P}_{\mathcal{R}}\sim 10^{-9}$  should be enhanced at least by "four orders of magnitude" at small scales.

# Why $\Omega_{GW}^{induced}$ is proportional to $\mathcal{P}_{\mathcal{R}}^2$ ?

Because  $\mathcal{R}$  gives a source to h which starts at the quadratic order

$$h_{ij}^{\prime\prime} + 2 \frac{a^{\prime}}{a} h_{ij}^{\prime} - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn} [\partial_m \mathcal{R} \partial_n \mathcal{R}]$$

## Spectral density of GWs:

 $\Omega_{\rm GW}^{\rm induced} = \mathcal{O}(10^{-5}) \mathcal{P}_{\mathcal{R}}^2$ 

At CMB scales  $k \sim k_{CMB}$ ,  $\mathcal{P}_{\mathcal{R}} \sim 10^{-9}$ . If power spectrum be scale-dependent such that  $\mathcal{P}_{\mathcal{R}} \gg \mathcal{P}_{\mathcal{R}}$  where  $\mathcal{P}_{\mathcal{R}}$  is the power spectrum at GW scale  $k \sim k_{GW}$ , one may achieve

 $\Omega_{
m GW}^{
m induced}\gtrsim {\cal O}(10^{-16})$ 

which is large enough to be detected by the GW detectors. Thus,  $\mathcal{P}_{\mathcal{R}}\gtrsim 10^{-5}$  is needed which means the initial power spectrum  $\mathcal{P}_{\mathcal{R}}\sim 10^{-9}$  should be enhanced at least by "four orders of magnitude" at small scales.

# Why $\Omega_{GW}^{induced}$ is proportional to $\mathcal{P}_{\mathcal{R}}^2$ ?

Because  $\mathcal{R}$  gives a source to h which starts at the quadratic order

$$h_{ij}^{\prime\prime} + 2 \frac{a^{\prime}}{a} h_{ij}^{\prime} - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn} [\partial_m \mathcal{R} \partial_n \mathcal{R}]$$

Is it NOT possible to have a "linear" source by  $\mathcal{R}$ .

#### SVT decomposition theorem

**Curvature perturbation**  $\mathcal{R}$ : Perturbation of the (effective) field which is dominant at the background.

$$h_{ij}'' + 2rac{a'}{a}h_{ij}' - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn}[\partial_m \mathcal{R} \partial_n \mathcal{R}]; \quad \Omega^{\mathrm{induced}}_{\mathrm{GW},\mathcal{R}} \propto \mathcal{P}_{\mathcal{R}}^2$$

**Spectator fields (s, v, t):** Extra fields which do not significantly contribute to the background. These fields can provide scalar, vector, and even tensor perturbations:

$$\begin{split} h_{ij}'' + 2\frac{a'}{a}h_{ij}' - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn}[\partial_m s \partial_n s]; \quad \Omega_{\mathrm{GW},s}^{\mathrm{induced}} \propto \mathcal{P}_s^2 \\ h_{ij}'' + 2\frac{a'}{a}h_{ij}' - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn}[v_m v_n]; \qquad \Omega_{\mathrm{GW},v}^{\mathrm{induced}} \propto \mathcal{P}_v^2 \\ h_{ij}'' + 2\frac{a'}{a}h_{ij}' - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn}[t_{mn}]; \qquad \Omega_{\mathrm{GW},t}^{\mathrm{induced}} \propto \mathcal{P}_t \end{split}$$

#### SVT decomposition theorem

**Curvature perturbation**  $\mathcal{R}$ : Perturbation of the (effective) field which is dominant at the background.

$$h_{ij}'' + 2rac{a'}{a}h_{ij}' - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn}[\partial_m \mathcal{R} \partial_n \mathcal{R}]; \quad \Omega^{\mathrm{induced}}_{\mathrm{GW},\mathcal{R}} \propto \mathcal{P}_{\mathcal{R}}^2$$

**Spectator fields (s, v, t):** Extra fields which do not significantly contribute to the background. These fields can provide scalar, vector, and even tensor perturbations:

$$\begin{split} h_{ij}'' + 2\frac{a'}{a}h_{ij}' - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn}[\partial_m s \partial_n s]; \quad \Omega_{\mathrm{GW},s}^{\mathrm{induced}} \propto \mathcal{P}_s^2 \\ h_{ij}'' + 2\frac{a'}{a}h_{ij}' - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn}[\mathbf{v}_m \mathbf{v}_n]; \qquad \Omega_{\mathrm{GW},v}^{\mathrm{induced}} \propto \mathcal{P}_v^2 \\ h_{ij}'' + 2\frac{a'}{a}h_{ij}' - \partial^2 h_{ij} \propto \mathcal{T}_{ij}^{mn}[\mathbf{t}_{mn}]; \qquad \Omega_{\mathrm{GW},t}^{\mathrm{induced}} \propto \mathcal{P}_t \end{split}$$

Typical situation is  $\mathcal{P}_{s,v,t} \ll \mathcal{P}_{\mathcal{R}}$ . Even if  $\mathcal{P}_t \ll \mathcal{P}_{\mathcal{R}}$ ,  $\Omega_{\mathrm{GW},t}^{\mathrm{induced}}$  and  $\Omega_{\mathrm{GW},\mathcal{R}}^{\mathrm{induced}}$  may be at the same order since tensor modes can appear at the "linear" level.

#### "Primary tensor-induced" GWs [MAG and M. Sasaki, PLB (2023)]

 $\Omega^{\text{induced}}_{\text{GW},\mathcal{R}} = \mathcal{O}(10^{-5})\mathcal{P}_{\mathcal{R}}^{2} \qquad \Omega^{\text{induced}}_{\text{GW},t} = \mathcal{O}(10^{-5})\mathcal{O}(10^{-?})\mathcal{P}_{t}^{1}$ What is the order of the unknown factor  $\mathcal{O}(10^{-?})$ ?

#### "Primary tensor-induced" GWs [MAG and M. Sasaki, PLB (2023)]

$$\begin{split} \Omega^{\mathrm{induced}}_{\mathrm{GW},\mathcal{R}} &= \mathcal{O}(10^{-5})\mathcal{P}^2_{\mathcal{R}} & \Omega^{\mathrm{induced}}_{\mathrm{GW},t} = \mathcal{O}(10^{-5})\mathcal{O}(10^{-?})\mathcal{P}_t \\ \text{What is the order of the unknown factor } \mathcal{O}(10^{-?})? \\ & \text{It depends on the model.} \end{split}$$

#### Models that can provide extra tensor modes:

#### "Primary tensor-induced" GWs [MAG and M. Sasaki, PLB (2023)]

$$\begin{split} \Omega^{\mathrm{induced}}_{\mathrm{GW},\mathcal{R}} &= \mathcal{O}(10^{-5})\mathcal{P}^2_{\mathcal{R}} & \Omega^{\mathrm{induced}}_{\mathrm{GW},t} = \mathcal{O}(10^{-5})\mathcal{O}(10^{-?})\mathcal{P}_t \\ \text{What is the order of the unknown factor } \mathcal{O}(10^{-?})? \\ & \text{It depends on the model.} \end{split}$$

#### Models that can provide extra tensor modes:

```
    A spin-two (or higher spin) spectator field.

            [L. Bordin, P. Creminelli, A. Khmelnitsky, L. Senatore, JCAP (2018)]
            [L. Iacconi, M. Fasiello, H. Assadullahi, E. Dimastrogiovanni, D. Wands, JCAP (2020)]

    Yang-Mills theories with homogeneous and isotropic vev.

            [A. Maleknejad and M.M. Sheikh-Jabbari, PLB (2013)]
            [B. Thorne, T. Fujita, M. Hazumi, N. Katayama, E. Komatsu, M. Shiraishi, PRD (2018)]
            Bi-gravity theories.
            [C. de Rham, G. Gabadadze, A. J. Tolley, PRL (2011)]
            [LISA Cosmology Working Group; E. Belgacem et al, JCAP (2020)]
            [J. B. Jiménez, J. M. Ezquiaga, L. Heisenberg, JCAP (2020)]

    Modified gravity theories with dynamical torsion.
    [K. Aoki, S. Mukohyama, JCAP (2020)]
    [K. Aoki, S. Bahamonde, J. Gigante Valcarcel, MAG, arXiv:2310.16007 [gr-qc]]
    ...
```

Implementing EFT method, we found  $\mathcal{O}(1)$  is possible. So, we should not neglect contribution of the extra tensor perturbations even if they are spectator.

#### Tensor-induced origin for the PTA signal: No PBH production

MAG, M. Sasaki and T. Suyama, PLB (2023)

The recent PTA signal reported by NANOGrav, EPTA/InPTA, PPTA, and CPTA:

 $10^{-9} \lesssim \Omega_{
m GW}^{
m PTA} \lesssim 10^{-7}$   $(10^{-9} \lesssim f^{
m PTA}/
m Hz \lesssim 10^{-7})$ 

 Secondary scalar-induced GWs (see, i.e., D. G. Figueroa, et al, arXiv:2307.02399 and references therein): Ω<sup>induced</sup><sub>GW,R</sub> = O(10<sup>-5</sup>)P<sup>2</sup><sub>R</sub> ⇒ 10<sup>-2</sup> ≲ P<sup>PTA</sup><sub>R</sub> ≲ 10<sup>-1</sup>

 Large values of P<sup>PTA</sup><sub>R</sub> may lead to the overproduction of PBH!

 Primary tensor-induced GWs: Ω<sup>induced</sup><sub>GW,t</sub> = O(10<sup>-5</sup>)O(1)P<sub>t</sub> ⇒ 10<sup>-4</sup> ≲ P<sup>PTA</sup><sub>t</sub> ≲ 10<sup>-2</sup>

 $t_{ij}$  is a spectator field and since it's energy density is subdominant, it will not lead to any PBH formation.

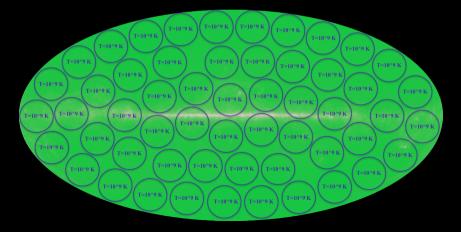
#### Summary

- GW observations can give us valuable information about the late stage of inflation which is not accessible by the CMB.
- The contribution of the spectator fields to stochastic GWs is expected to be very small compared with the one from curvature perturbation or the field which dominates the background.
- If a spectator field provides extra tensor perturbation (on top of the metric tensor perturbation), its contribution to the stochastic GWs can be comparable to the one from curvature perturbation.
- The scenario with extra tensor perturbation (primary tensor-induced GWs) is in principle distinguishable from the curvature perturbation case (secondary scalar-induced GWs) (e.g. the recent PTA signal): PBH will hardly form in the first case.

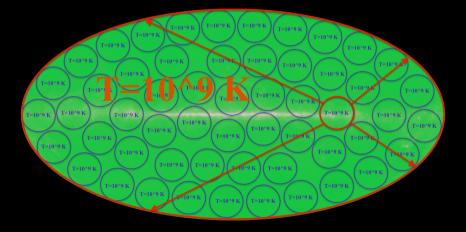
# **Backup slides**

#### Horizon problem

There are many ( $\sim 10^8$ ) casually disconnected regions with the same temperatures  $T \simeq 10^9$  K at Big Bang nucleosynthesis!



Inflation creates our observable universe from one causally disconnected region through the rapid exponential expansion

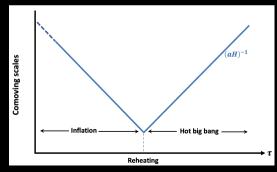


# Inflation

# Inflation is a short accelerated expansion $\ddot{a} > 0$ at early times, say before the Big Bang nucleosynthesis

The comoving Hubble horizon  $(aH)^{-1} = \dot{a}^{-1}$  is

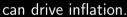
- decreasing in accelerating universe  $\downarrow$ :  $(aH)^{-1} = -\tau$  with  $\tau \in [-\infty, 0]$  ( $\tau \equiv \int dt/a(t)$  is conformal time)
- increasing in decelerating universe  $\uparrow$ :  $(aH)^{-1} = au$  with  $au \in [0,\infty]$



#### **Slow-roll inflation**

Scalar field with slow-roll potential

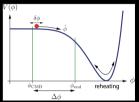
$$egin{aligned} \epsilon &= -rac{\dot{H}}{H^2} \simeq rac{M_{
m Pl}^2}{2} \Big(rac{V,\phi}{V}\Big)^2 \ll 1 \ \eta &\equiv rac{\dot{\epsilon}}{H\epsilon} \simeq -\epsilon + M_{
m Pl}^2 rac{V,\phi\phi}{V} \ll 1 \end{aligned}$$



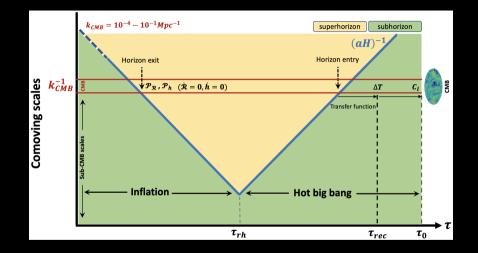
Its quantum fluctuations  $\delta\phi(t, \mathbf{x}) = \phi(t, \mathbf{x}) - \langle \phi(t) \rangle$  characterized by curvature perturbations  $\mathcal{R} = \frac{H}{\phi} \delta\phi$  (in spatially flat gauge) satisfy

$$(a\mathcal{R}_k)'' + \left[(k au)^2 - 2 + eta_\mathcal{R}
ight] rac{a\mathcal{R}_k}{ au^2} = 0; \qquad eta_\mathcal{R} \equiv rac{m_\mathcal{R}^2}{H_{inf}^2} \simeq 6\epsilon - 3\eta \ll 1$$

Superhorizon curvature perturbations  $-k\tau < \sqrt{2}$  or  $k < \sqrt{2}aH_{inf}$  are produced through interaction with gravity.



Danial Baumann (2009)



Slow-roll inflation generates <u>almost Gaussian</u>, <u>almost scale-invariant</u>, and <u>almost adiabatic</u> perturbations

#### **Spectator fields**

**Curvature perturbation**  $\mathcal{R}$ : Perturbation of the (effective) field which is dominant at the background.

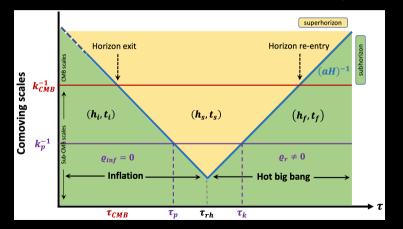
**Spectator fields:** Extra fields which do not significantly contribute to the background. These fields can provide scalar, vector, and even tensor perturbations:

$$S_{ij}^{\mathrm{TT}} = \mathcal{O}(\epsilon_t) + \mathcal{O}(\epsilon_s^2) + \mathcal{O}(\epsilon_s^2) + \mathcal{O}(\epsilon_v^2) + \mathcal{O}(\epsilon_t^2) + \cdots,$$

- Due to the hierarchy  $\mathcal{P}_{s,v,t} \ll \mathcal{P}_{\mathcal{R}}$ , contributions of spectator fields seem to be very small.
- Even if  $\mathcal{P}_t \ll \mathcal{P}_{\mathcal{R}}$ ,  $\mathcal{O}(\epsilon_t)$  and  $\mathcal{O}(\epsilon_s^2)$  may be at the same order since tensor modes can appear at the LINEAR level.

#### A simple subset

A simple model: i) assuming  $\rho_{inf} = 0$  while  $\rho_r \neq 0$ , ii)  $t_i$  enhances at  $\tau \sim \tau_p$ , i.e., by a dip in f and/or  $c_t$  s.t.  $|t_{ij}(\tau_k)| \gg |h_{ij}(\tau_k)|$ .



#### "Primary tensor-induced" stochastic GWs

MAG and M. Sasaki, arxiv:2302.14080

$$egin{aligned} \Omega_{ ext{GW},t}^{ ext{induced}}(k) &= \mathcal{O}(10^{-6}) \mathcal{K}_h(k, au) arrho_{ ext{r}}^2 \, rac{c_t^2 \mathcal{P}_{t,k}(k)}{3 M_{ ext{Pl}}^2} \ &= \mathcal{O}(10^{-6}) \mathcal{K}_h(k, au) arrho_{ ext{r}}^2 \, \Omega_{t, ext{r}}(k) \end{aligned}$$

where

$$egin{aligned} \mathcal{K}_{\hbar}(m{k}, au) &pprox \left\{ egin{aligned} & 1 \ (1-c_t^2)^2 & c_t < 1\,, \ & rac{1}{arrho_{
m r}^2} \sin^2(arrho_{
m r}\Delta\mathcal{N}/2) & c_t = 1\,, \end{aligned} 
ight. \end{aligned}$$

where  $\Delta N = \ln(a/a_k)$  is the number of e-folds after the horizon crossing.

**Constraints from BBN** 

$$\Omega_{t,\mathrm{r}}(k) = \frac{7}{16} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\mathrm{eff}} < 0.034$$

#### The model

The effective action for extra traceless-transverse tensor modes  $t_{ij}$ , coupled minimally to gravity, in FLRW background is [L. Bordin, P. Creminelli, A. Khmelnitsky, L. Senatore, JCAP (2018)]

$$S = \frac{1}{8} \int d^3x \, d\tau \, a^2 \left\{ M_{\rm Pl}^2 \left[ \left( h_{ij}' \right)^2 - \left( \partial_i h_{jk} \right)^2 \right] + f^2 \left[ \left( t_{ij}' \right)^2 - c_t^2 \left( \partial_i t_{jk} \right)^2 \right] \right\} \\ + \frac{M_{\rm Pl}}{4} \varrho \int d^3x \, d\tau \, aa' \left[ t^{ij} h_{ij}' \right]$$

where  $c_t$ , f,  $\rho$  are functions of time. EoMs are given by

$$M_{\rm Pl}\left(h_{\bf k}''+2\frac{a'}{a}h_{\bf k}'+k^2h_{\bf k}\right) = -\varrho\frac{a'}{a}\left[t_{\bf k}'+\frac{(aa')'}{aa'}t_{\bf k}\right]$$
$$t_{\bf k}''+2\frac{(af)'}{af}t_{\bf k}'+c_t^2k^2t_{\bf k} = \frac{\varrho}{f^2}\frac{a'}{a}\left(M_{\rm Pl}h_{\bf k}'\right)$$

Thinking in the context of EFT,  $\rho \ll 1$  is needed to have weakly coupled (consistent) setup.

#### **Oscillatory features**

The system can be diagonalized by substituting

$$h_{\mathbf{k}} = \frac{1}{a} \left( \alpha X_{\mathbf{k}} + \beta Y_{\mathbf{k}} \right) , \qquad t_{\mathbf{k}} = \frac{1}{af} \left( -\beta X_{\mathbf{k}} + \alpha Y_{\mathbf{k}} \right) ,$$

such that

$$X''_{\mathbf{k}} + \omega_X^2 X_{\mathbf{k}} = 0, \qquad \qquad Y''_{\mathbf{k}} + \omega_Y^2 Y_{\mathbf{k}} = 0,$$

For the modes deep inside the horizon  $k \gg H$ , the positive frequency WKB solutions of are

$$X_{\mathbf{k}} \propto e^{-i\int^{ au}\omega_{\mathrm{Y}}( ilde{ au})d ilde{ au}} \,, \qquad \qquad Y_{\mathbf{k}} \propto e^{-i\int^{ au}\omega_{\mathrm{Y}}( ilde{ au})d ilde{ au}}$$

Even if there is no oscillation in the power spectra of  $X_k$  and  $Y_k$ 

$$P_X \propto |X_{\mathbf{k}}|^2 \,, \qquad \qquad P_Y \propto |Y_{\mathbf{k}}|^2 \,,$$

there will be oscillatory features in the power spectra of  $h_k$  and  $t_k$  for  $\varrho \neq 0$ 

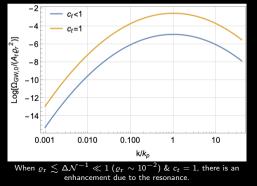
$$P_h \propto |\alpha X_{\mathbf{k}} + \beta Y_{\mathbf{k}}|^2, \qquad P_t \propto |-\beta X_{\mathbf{k}} + \alpha Y_{\mathbf{k}}|^2,$$

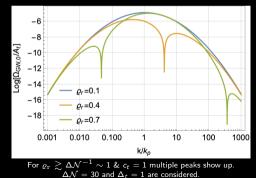
The observable quantity in GW detectors is the power spectrum of  $h_k$ and not diagonalized eigenstates  $X_k$  and  $Y_k$ .

#### A simple model

$$\Omega_{\mathrm{GW},t}^{\mathrm{induced}}(k) = \begin{cases} \mathcal{O}(10^{-5}) \, \varrho_{\mathrm{r}}^2 \, \Omega_{t,\mathrm{r}}(k) & c_t < 1\\ \mathcal{O}(10^{-5}) \, \varrho_{\mathrm{r}}^2 \Delta \mathcal{N}^2 \, \Omega_{t,\mathrm{r}}(k) & c_t = 1 & \& \ \varrho_{\mathrm{r}} \lesssim \Delta \mathcal{N}^{-1}\\ \mathcal{O}(10^{-5}) \sin^2 \left[ \varrho_{\mathrm{r}} \Delta \mathcal{N}/2 \right] \Omega_{t,\mathrm{r}}(k) & c_t = 1 & \& \ \varrho_{\mathrm{r}} \gtrsim \Delta \mathcal{N}^{-1} \end{cases}$$

where, i.e.,  $\Delta N \sim 30$  corresponds to LISA scale with  $k = 10^{-3}$ Hz. Assuming lognormal power spectrum  $\Omega_{t,r}(k) = \frac{A_t}{\sqrt{2\pi\Delta_t}} \exp\left[-\frac{\ln^2(k/k_p)}{2\Delta_t^2}\right]$ ,

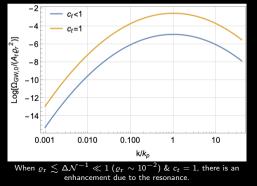


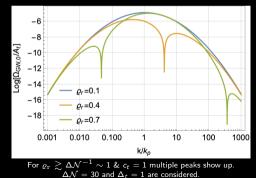


#### A simple model

$$\Omega_{\mathrm{GW},t}^{\mathrm{induced}}(k) = \begin{cases} \mathcal{O}(10^{-5}) \, \varrho_{\mathrm{r}}^2 \, \Omega_{t,\mathrm{r}}(k) & c_t < 1\\ \mathcal{O}(10^{-5}) \, \varrho_{\mathrm{r}}^2 \Delta \mathcal{N}^2 \, \Omega_{t,\mathrm{r}}(k) & c_t = 1 & \& \ \varrho_{\mathrm{r}} \lesssim \Delta \mathcal{N}^{-1}\\ \mathcal{O}(10^{-5}) \sin^2 \left[ \varrho_{\mathrm{r}} \Delta \mathcal{N}/2 \right] \Omega_{t,\mathrm{r}}(k) & c_t = 1 & \& \ \varrho_{\mathrm{r}} \gtrsim \Delta \mathcal{N}^{-1} \end{cases}$$

where, i.e.,  $\Delta N \sim 30$  corresponds to LISA scale with  $k = 10^{-3}$ Hz. Assuming lognormal power spectrum  $\Omega_{t,r}(k) = \frac{A_t}{\sqrt{2\pi\Delta_t}} \exp\left[-\frac{\ln^2(k/k_p)}{2\Delta_t^2}\right]$ ,





$$egin{split} \mathcal{P}_{h_s} &= rac{2\mathcal{H}_{ ext{inf}}^2}{\pi^2 \mathcal{M}_{ ext{Pl}}^2} \left[1 - arrho_{ ext{inf}} \left(\mathcal{N} - \mathcal{N}_k
ight)
ight]^2, \ \mathcal{P}_{t_s} &= rac{2\mathcal{H}_{ ext{inf}}^2}{\pi^2 \mathcal{M}_{ ext{Pl}}^2} rac{1}{c_t} \left[1 - rac{2}{3}arrho_{ ext{inf}}^2 \left(\mathcal{N} - \mathcal{N}_k
ight)
ight]. \end{split}$$

$$\mathcal{P}_{\mathcal{R}} = rac{H_{ ext{inf}}^2}{8\pi^2 M_{ ext{Pl}}^2} rac{1}{\epsilon} \left[ 1 + rac{arrho_{ ext{inf}}^2}{6\epsilon c_s} rac{2+c_s}{(1+c_s)^2} 
ight] \, ,$$

$$arrho_{
m inf} < {\sf Min}\left[(N-N_k)^{-1}, 2\sqrt{2\epsilon c_s}
ight] \;,$$
 ${
m Inf} \lesssim 10^{-2} \; {
m for} \; N-N_k pprox {\cal O}(50), \; \epsilon = {\cal O}(10^{-3}-10^{-2}), \; c_s = 10^{-2}$