Investigating $\bar{B}_{q}^{0} \rightarrow D_{q}^{(*)+}\left\{\pi^{-}, \rho^{-}, K^{(*)-}\right\}$ decays in and beyond the Standard Model

Stefan Meiser

UB \& ICCUB
February 7, 2024

Introduction

What is a B-meson?

- bound state of heavy (anti-) b-quark and light quark (d, u, s)
- similar to hydrogen atom: heavy proton sources Coulomb field that binds electron

Hydrogen atom
B-meson

Why are B-mesons interesting?

- experimentally accessible
- CP-violation
- constraining CKM matrix elements
- rare decays that are very sensitive to NP
- several tensions of SM prediction and experimental values

Motivation

- consider

- difficult to compute since hadronic and perturbative QCD are hard to disentangle
- "QCD factorization" gives systematic framework to do so

$$
\bar{B}^{0} \rightarrow D^{(*)+} K^{-} \text {and } \bar{B}_{s}^{0} \rightarrow D_{s}^{(*)+} \pi^{-} \text {are especially theoretically clean }
$$

experimental results

Theoretical Framework

Weak Effective Theory

$\mathcal{H}_{\mathrm{SM}}$

$\mathcal{H}_{\text {WET }}$

- typical process energy $\ll M_{W}$
- integrate out W-boson

$$
\begin{gathered}
\Downarrow \\
\mathcal{H}_{\mathrm{WET}}=\frac{G_{F}}{\sqrt{2}} V_{c b} V_{u q}^{*}\left(C_{1} \mathcal{Q}_{1}^{V L L}+C_{2} \mathcal{Q}_{2}^{V L L}\right) \\
\mathcal{Q}_{1}^{V L L}=\left[\bar{c}^{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) b^{\beta}\right]\left[\bar{q}^{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) u^{\alpha}\right], \quad \mathcal{Q}_{2}^{V L L}=\left[\bar{c}^{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) b^{\alpha}\right]\left[\bar{q}^{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) u^{\beta}\right]
\end{gathered}
$$

Weak Effective Theory

- can be generalized to beyond the Standard Model (BSM) analysis
- effective Hamiltonian for $b \rightarrow c \bar{u} q$ decays:

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{c b} V_{u q}^{*} \sum_{i}\left(C_{1}^{i} \mathcal{Q}_{1}^{i}+C_{2}^{i} \mathcal{Q}_{2}^{i}\right)
$$

with

$$
\mathcal{Q}_{1}^{i}=\left[\bar{c}^{\alpha} \Gamma_{1}^{i} b^{\beta}\right]\left[\bar{q}^{\beta} \Gamma_{2}^{i} u^{\alpha}\right], \mathcal{Q}_{2}^{i}=\left[\bar{c}^{\alpha} \Gamma_{1}^{i} b^{\alpha}\right]\left[\bar{q}^{\beta} \Gamma_{2}^{i} u^{\beta}\right] .
$$

QCD Factorization

factorization scheme for non-leptonic type I B-decays in the heavy-quark limit:

$$
\left\langle L^{-} D_{q}^{+}\right| \mathcal{O}_{i}\left|\bar{B}_{q}^{0}\right\rangle=\sum_{j} F_{j}^{B \rightarrow D}\left(m_{L}^{2}\right) \int_{0}^{1} d u T_{i j}^{!}(u) \Phi_{L}(u)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)
$$

where $L^{-} \in\left\{\pi^{-}, K^{-}\right\}$.

$$
\begin{aligned}
F_{j}^{B \rightarrow D}\left(m_{L}^{2}\right) & : \bar{B}_{q}^{0} \rightarrow D_{q}^{+} \text {form factor } \\
\Phi_{L}(u) & : \text { light meson LCDA } \\
T_{i j}^{1}(u) & : \text { hard-scattering kernel } \\
\mathcal{O}\left(\wedge_{\mathrm{QCD}} / m_{b}\right) & : \text { power-suppressed contributions }
\end{aligned}
$$

Hard-Scattering Kernel

Hard-scattering kernels $T_{i j}^{l}$ at $\mathcal{O}\left(\alpha_{s}\right)^{\text {a }}$ computed from vertex correction diagrams:

$$
\begin{aligned}
& \left\langle L^{-} D_{q}^{+}\right| \mathcal{O}_{i}\left|\bar{B}_{q}^{0}\right\rangle= \\
& \quad \sum_{j} F_{j}^{B \rightarrow D}\left(m_{L}^{2}\right) \int_{0}^{1} d u T_{i j}^{\prime}(u) \Phi_{L}(u)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)
\end{aligned}
$$

Other diagrams

1. power-suppressed
2. included in non-perturbative input
3. not present due to flavor structure
[^0]The Puzzle

The Puzzle in $\bar{B}^{0} \rightarrow D^{+} K^{-}$and $\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}$Decays
QCD factorization prediction within the Standard Model:

$$
\begin{aligned}
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} K^{-}\right) & =(0.326 \pm 0.015) \cdot 10^{-3} \\
\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}\right) & =(4.42 \pm 0.21) \cdot 10^{-3}
\end{aligned}
$$

[Bordone/Gubernari/Huber/Jung/van Dyk '20]
experimental values:

$$
\begin{aligned}
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} K^{-}\right) & =(0.186 \pm 0.020) \cdot 10^{-3} \\
\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}\right) & =(3.00 \pm 0.23) \cdot 10^{-3}
\end{aligned}
$$

PDG/LHCb/Belle/BaBar/CLEO/ARGUS
\Downarrow
strong tension in $\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}$and $\bar{B}^{0} \rightarrow D^{+} K^{-}$

Possible Explanations for the Puzzle

$$
\left\langle L^{-} D_{q}^{+}\right| \mathcal{O}_{i}\left|\bar{B}_{q}^{0}\right\rangle=\sum_{j} F_{j}^{B \rightarrow D}\left(m_{L}^{2}\right) \int_{0}^{1} d u T_{i j}^{1}(u) \Phi_{L}(u)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)
$$

1. Large non-factorizable contributions:
unlikely

- $\mathcal{O}(15-20 \%)$ at amplitude level necessary
- disfavored by LCSR estimate

2. Experimental issue:

- only charged final state particles
- would imply problems in several consistent measurements

3. Shift in parametric inputs:

- $V_{c b}, V_{u s}, V_{u d}$ well known
- shift would violate CKM unitarity

4. New physics: only possibility left, but is it viable?

New Physics as Explanation for the Puzzle

- BSM interpretation studied in literature
- one-loop hard-scattering kernels for the full basis of BSM operators
- fit to $R_{(s) L}^{(*)}=\frac{\Gamma\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{(*)+} L^{-}\right)}{d \Gamma\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{+(*)} \ell^{-} \bar{\nu}_{\ell}\right) /\left.d q^{2}\right|_{q^{2}=m_{L}^{2}}}$ with one and two allowed BSM contributions

Only some vector and scalar Dirac structures can explain data

Possible Problems with [Cai et al. '21]

$$
\left\langle L^{-} D_{q}^{+}\right| \mathcal{O}_{i}\left|\bar{B}_{q}^{0}\right\rangle=\sum_{j} F_{j}^{B \rightarrow D}\left(m_{L}^{2}\right) \int_{0}^{1} d u T_{i j}^{1}(u) \Phi_{L}(u)+\mathcal{O}\left(\Lambda_{Q C D} / m_{b}\right)
$$

1. renormalization scheme used for the calculation not explicitly stated
2. power suppressed contributions from three-particle states not discussed
3. for some operators no published results for the $m_{c} \rightarrow 0$ limit

$$
\Downarrow
$$

my goal:

- recalculate one-loop hard-scattering kernels
- calculate power suppressed contributions

Results

Hard-Scattering Kernels

- recalculated all twenty hard-scattering kernels and found agreement with literature [Cai et al. '21]
- renormalization scheme stated explicitly, consistent with other existing calculations
- checked $m_{c} \rightarrow 0$ limit

Three-Particle States

contribution from three-particle light meson state :

non-zero contributions only for vector and tensor operators:

- vector: $m_{c} \rightarrow 0$ limit differs by $1 / N$ compared to literature [Beneke, Buchalla, Neubert, Sachrajda '00]
- tensor: contributions are highly suppressed
\square

1. three-particle states are under control in and beyond the Standard Model
2. decays even cleaner than assumed

Pheno-Analysis

- pheno-analysis is being performed with

EOS

- tree-level and one-loop results implemented in EOS
- three-particle contributions are work in progress
- fit: plan to fit all 20 WC simultaneously with ~ 40 parameters related to form-factors and ~ 10 parameters related to the experimental branching ratios

[van Dyk et al. '21]

Summary and Outlook

- B-mesons are interesting laboratories for new physics
- some tensions with SM predictions persist
- SM predictions for $\bar{B}_{(s)} \rightarrow D_{(s)}^{+}\left\{\pi^{-}, K^{-}\right\}$BRs are way off \rightarrow possible new physics?
- calculated one-loop hard-scattering kernels for all twenty operators and found agreement with literature
- calculated contributions from three parton light meson states
\rightarrow found $1 / N$ discrepancy in SM result
\rightarrow three particle BSM contributions highly suppressed
- perform more exhaustive pheno-analysis

Non-Leading Fock State - Twist 3 and Twist 4 LCDAs

Twist 3:

$$
\left\langle L^{-}(q)\right| \bar{q}(0) \sigma_{\mu \nu} \gamma_{5} g_{s} G_{\alpha \beta}(v x) u(0)|0\rangle=i f_{3 L}\left[\left(q_{\alpha} q_{\mu} g_{\beta \nu}-q_{\beta} q_{\mu} g_{\nu \alpha}\right)-(\mu \leftrightarrow \nu)\right] \int \mathcal{D} u e^{i v u_{3} q \cdot x} \phi_{3 L}\left(u_{i}\right)
$$

Twist 4:

$$
\begin{aligned}
&\left\langle L^{-}(q)\right| \bar{q}(0) \gamma_{\mu} \gamma_{5} g_{s} G_{\alpha \beta}(v x) u(0)|0\rangle=f_{L} \int \mathcal{D} u e^{i v u_{3} q \cdot x}\{ {\left[q_{\beta} g_{\alpha \mu}-q_{\alpha} g_{\beta \mu}\right] \phi_{\perp}\left(u_{i}\right) } \\
&\left.+\left[\frac{q_{\mu} q_{\alpha} x_{\beta}}{q \cdot x}-\frac{q_{\mu} q_{\beta} x_{\alpha}}{q \cdot x}\right]\left(\phi_{\| \mid}\left(u_{i}\right)+\phi_{\perp}\left(u_{i}\right)\right)\right\} \\
&\left\langle L^{-}(q)\right| \bar{q}(0) \gamma_{\mu} g_{s} \tilde{G}_{\alpha \beta}(v x) u(0)|0\rangle=i f_{L} \int \mathcal{D} u e^{i v u_{3} q \cdot x}\left\{\left[q_{\beta} g_{\alpha \mu}-q_{\alpha} g_{\beta \mu}\right] \tilde{\phi}_{\perp}\left(u_{i}\right)\right. \\
&\left.+\left[\frac{q_{\mu} q_{\alpha} x_{\beta}}{q \cdot x}-\frac{q_{\mu} q_{\beta} x_{\alpha}}{q \cdot x}\right]\left(\tilde{\phi}_{\| \|}\left(u_{i}\right)+\tilde{\phi}_{\perp}\left(u_{i}\right)\right)\right\}
\end{aligned}
$$

Matching and Renormalization Group Running

Hard-Scattering Kernels - Calculation

$$
\begin{aligned}
\left\langle D_{(s)}^{+} L^{-}\right. & \left.\left|\mathcal{Q}_{1}^{i}\right| \bar{B}_{(s)}^{0}\right\rangle_{1-\text { gluon }} \\
& =-i g_{s}^{2} \frac{C_{F}}{N} \int \frac{d^{4} k}{(2 \pi)^{4}}\left\langle D_{(s)}^{+}\right| \bar{c} A_{1}^{i}(k) b\left|\bar{B}_{(s)}^{0}\right\rangle \frac{1}{k^{2}} \int_{0}^{1} d u \operatorname{Tr}\left[M^{L}(u) A_{2}^{i}(u q, \bar{u} q, k)\right],
\end{aligned}
$$

with

$$
\begin{aligned}
A_{1}^{i}(k) & =\gamma^{\beta} \frac{\phi_{c}-k+m_{c}}{2 p_{c} \cdot k-k^{2}} \Gamma_{1}^{i}-\Gamma_{1}^{i} \frac{\phi_{b}+k+m_{b}}{2 p_{b} \cdot k+k^{2}} \gamma^{\beta}, \\
A_{2}^{i}\left(I_{q}, l_{\bar{q}}, k\right) & =\Gamma_{2}^{i} \frac{l_{\bar{q}}+k}{2 I_{\bar{q}} \cdot k+k^{2}} \gamma_{\beta}-\gamma_{\beta} \frac{l_{q}+k}{2 I_{q} \cdot k+k^{2}} \Gamma_{2}^{i}, \\
M_{\alpha \delta}^{L} & =\frac{i f_{L}}{4}\left\{\phi \gamma_{5} \phi_{L}(u)-\mu_{P} \gamma_{5}\left(\phi_{p}(u)-i \sigma_{\mu \nu} n_{+}^{\mu} n_{-}^{\nu} \frac{\phi_{\sigma}^{\prime}(u)}{12}+i \sigma_{\mu \nu} q^{\mu} \frac{\phi_{\sigma}(u)}{6} \frac{\partial}{\partial I_{q \perp \nu}}\right)\right\} \delta \alpha .
\end{aligned}
$$

$$
\phi_{L}: \text { twist-2, vector operators }
$$

$$
\phi_{p}, \phi_{\sigma}: \text { twist-3, scalar/tensor operators }
$$

Likelihood

measurement	value	source	reference(s)
$\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}\right)$	$(3.6 \pm 0.5 \pm 0.5) 10^{-3}$	Belle	[15, 21]
$\frac{f_{s}}{f_{d}} \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-}\left(\rightarrow \phi\left(\rightarrow K^{+} K^{-}\right) \pi^{-}\right) \pi^{+}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{-}\left(\rightarrow K^{+} \pi^{-} \pi^{-}\right) \pi^{+}\right)}$	$(6.7 \pm 0.5) \%$	CDF	[41]*
$\frac{f_{s}}{f_{d}} \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-}\left(\rightarrow K^{+} K^{-} \pi^{-}\right) \pi^{+}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{-}\left(\rightarrow K^{+} \pi^{-} \pi^{-}\right) \pi^{+}\right)}$	0.174 ± 0.007	LHCb	[42]
$\frac{f_{s}}{f_{d}} \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-}\left(\rightarrow K^{+} K^{-} \pi^{-}\right) \pi^{+}\right)}{\mathcal{B}\left(B^{0} \rightarrow D D^{-}\left(\rightarrow K^{+} \pi^{-} \pi^{-}\right) K^{+}\right)}$	2.08 ± 0.08	LHCb	$[25]^{\dagger}$
$\frac{\mathcal{B}\left(B^{0} \rightarrow D^{-} K^{+}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)}$	$(8.22 \pm 0.28) \%$	LHCb	$[25]^{\dagger}$
$\frac{\mathcal{B}\left(B^{0} \rightarrow D^{-} K^{+}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)}$	$(6.8 \pm 1.7) \%$	Belle	[43]
$f_{00} \mathcal{B}\left(B^{0} \rightarrow D^{-}\left(\rightarrow K^{+} \pi^{-} \pi^{-}\right) \pi^{+}\right)$	$(1.21 \pm 0.05) 10^{-4}$	BaBar/CLEO	[24, 44]
$\mathcal{B}\left(B^{0} \rightarrow D^{-}\left(\rightarrow K^{+} \pi^{-} \pi^{-}\right) \pi^{+}\right)$	(2.88 $\pm 0.29) 10^{-4}$	BaBar	$[45]^{5}$
$\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{*-} \pi^{+}\right)}{\mathcal{B}\left(B_{0}^{0}\right.}$	0.66 ± 0.16	Belle	[46]
$\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}\right)$ $\mathcal{B}\left(B^{0} \rightarrow D^{*-} K^{+}\right)$ $\mathcal{B}\left(B^{0} \rightarrow D^{*-}\right)^{+}$	0.66 ± 0.16	LHCb/BaBar/B	[46]
$\overline{\mathcal{B}\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)}$	$(7.75 \pm 0.30) \%$	LHCb/BaBar/Belle	[43, 47, 48]
$f_{00} \mathcal{B}\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)$	$(2.72 \pm 0.14) 10^{-3}$	$\mathrm{BaBar} / \mathrm{CLEO}$	[24, 49]
$\frac{\mathcal{B}\left(B^{0} \rightarrow D^{*-} \pi^{+}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right)}$	0.99 ± 0.14	BaBar	[45]
$\mathcal{B}\left(D_{s}^{-} \rightarrow \phi\left(\rightarrow K^{+} K^{-}\right) \pi^{-}\right)$	$(2.27 \pm 0.08) \%$	PDG average	[15]
$\mathcal{B}\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}\right)$	$(5.45 \pm 0.17) \%$	PDG average	[15]
$\mathcal{B}\left(D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}\right)$	(9.38 $\pm 0.16) \%$	PDG average	[15]
$\mathcal{B}\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}\right)\left(f_{s} / f_{d}\right)_{\mathrm{LHCb}, \mathrm{sl}}^{7 \mathrm{TeV}}$	0.0144 ± 0.0010	LHCb	[22, 23]
$\mathcal{B}\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}\right)\left(f_{s} / f_{d}\right)_{\text {LHCb,sl }}^{13 \mathrm{TeV}}$	0.0133 ± 0.0005	LHCb	[50]
$\left(f_{s} / f_{d}\right)_{\text {Tev }}$	0.334 ± 0.040	HFLAV average	[29]
f_{00}	0.488 ± 0.010	pheno comb. of BaBar/Belle	[40, 51, 52]

Fit Results

source scenario	PDG	our fits (w/o QCDF)		$\begin{array}{\|\|c\|} \left.\hline \text { our fit (w/ QCDF }, \text { no } f_{s} / f_{d}\right) \\ \text { ratios only SU(s) } \end{array}$		QCDF prediction\qquad
		no f_{s} / f_{d}	$\left(f_{s} / f_{d}\right)_{\mathrm{LHCb}, \mathrm{sl}}^{7}$			
$\chi^{2} /$ dof	-	2.5/4	$3.1 / 5$	4.6/6	3.7/4	-
$\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}\right)$	3.00 ± 0.23	3.6 ± 0.7	3.11 ± 0.25	$3.11_{-0.19}^{+0.21}$	$3.20_{-0.26}^{+0.20}$ *	4.42 ± 0.21
$\mathcal{B}\left(B^{0} \rightarrow D^{+} K^{-}\right)$	0.186 ± 0.020	0.222 ± 0.012	0.224 ± 0.012	0.227 ± 0.012	0.226 ± 0.012	0.326 ± 0.015
$\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)$	2.52 ± 0.13	2.71 ± 0.12	2.73 ± 0.12	2.74 ± 0.12	$2.73_{-0.11}^{+0.12}$	-
$\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{*+} \pi^{-}\right)$	2.0 ± 0.5	2.4 ± 0.7	2.1 ± 0.5	$2.46{ }_{-0.32}^{+0.37}$	$2.43_{-0.32}^{+0.39}$	$4.3{ }_{-0.8}^{+0.9}$
$\mathcal{B}\left(B^{0} \rightarrow D^{*+} K^{-}\right)$	0.212 ± 0.015	0.216 ± 0.014	0.216 ± 0.014	$0.213_{-0.013}^{+0.014}$	$0.213_{-0.013}^{+0.014}$	$0.327_{-0.034}^{+0.039}$
$\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \pi^{-}\right)$	2.74 ± 0.13	2.78 ± 0.15	2.79 ± 0.15	$2.76{ }_{-0.14}^{+0.15}$	$2.76_{-0.14}^{+0.15}$.
$\mathcal{R}_{s / d}^{P}$	16.1 ± 2.1	16.2 ± 3.3	14.0 ± 1.1	13.6 ± 0.6	$14.22_{-1.1}^{+0.6}$ *	$13.5{ }_{-0.5}^{+0.6}$
$\mathcal{R}_{s / d}^{V}$	9.4 ± 2.5	11.4 ± 3.6	9.6 ± 2.5	$11.4_{-1.6}^{+1.7}$	$11.4_{-1.5}^{+1.7}$ *	$13.1{ }_{-2.0}^{+2.3}$
$\mathcal{R}_{s}^{V / P}$	0.66 ± 0.16	0.66 ± 0.16	0.66 ± 0.16	$0.81{ }_{-0.11}^{+0.12}$	$0.76{ }_{-0.10}^{+0.11}$	$0.97{ }_{-0.17}^{+0.20}$
$\mathcal{R}_{d}^{V / P}$	1.14 ± 0.15	0.97 ± 0.08	0.97 ± 0.08	0.97 ± 0.06	0.95 ± 0.07	1.01 ± 0.11
$\left(f_{s} / f_{d}\right)_{\mathrm{LHCb}}^{7 \mathrm{TeV}}$	-	$0.223_{-0.038}^{+0.056}$ *	0.260 ± 0.019	$0.261_{-0.016}^{+0.018}$	$0.252_{-0.015}^{+0.023 ~ *}$	-
$\left(f_{s} / f_{d}\right)_{\text {Tev }}$	-	$0.208_{-0.038}^{+0.056}$ *	0.243 ± 0.028	$0.244_{-0.023}^{+0.026}$	$0.236_{-0.022}^{+0.026 ~ *}$	-
Δ_{P}	-	-	-	$-0.164_{-0.028}^{+0.030}$	-0.167 ± 0.029	-
Δ_{V}	-	-	-	$-0.20_{-0.05}^{+0.06}$	$-0.20_{-0.05}^{+0.06}$	-

[Bordone/Gubernari/Huber/Jung/van Dyk '20]

[^0]: ${ }^{2} \mathcal{O}\left(\alpha_{s}^{2}\right) \mathrm{SM}$ result is known [Huber//Känk/LLi' 16]

