Investigating $\bar{B}_q^0 \rightarrow D_q^{(*)+} \{\pi^-, \rho^-, K^{(*)-}\}$ decays in and beyond the Standard Model

Stefan Meiser

UB & ICCUB

February 7, 2024

Introduction

What is a *B*-meson?

- **b** bound state of heavy (anti-) *b*-quark and light quark (d, u, s)
- similar to hydrogen atom: heavy proton sources Coulomb field that binds electron

Hydrogen atom

Why are *B*-mesons interesting?

- experimentally accessible
- CP-violation
- constraining CKM matrix elements
- rare decays that are very sensitive to NP
- several tensions of SM prediction and experimental values

Motivation

consider

1

difficult to compute since hadronic and perturbative QCD are hard to disentangle
"QCD factorization" gives systematic framework to do so

$$ar{B}^0 o D^{(*)+} K^-$$
 and $ar{B}^0_s o D^{(*)+}_s \pi^-$ are especially theoretically clean $onumber 4$

experimental results

Theoretical Framework

Weak Effective Theory

Weak Effective Theory

can be generalized to beyond the Standard Model (BSM) analysis
 effective Hamiltonian for b → cūq decays:

$$\mathcal{H}_{\text{eff}} = \frac{\mathcal{G}_F}{\sqrt{2}} V_{cb} V_{uq}^* \sum_i \left(C_1^i \mathcal{Q}_1^i + C_2^i \mathcal{Q}_2^i \right) \,,$$

with

$$\mathcal{Q}_{1}^{i} = \left[\bar{c}^{\alpha} \Gamma_{1}^{i} b^{\beta}\right] \left[\bar{q}^{\beta} \Gamma_{2}^{i} u^{\alpha}\right] , \mathcal{Q}_{2}^{i} = \left[\bar{c}^{\alpha} \Gamma_{1}^{i} b^{\alpha}\right] \left[\bar{q}^{\beta} \Gamma_{2}^{i} u^{\beta}\right] .$$

QCD Factorization

factorization scheme for non-leptonic type I B-decays in the heavy-quark limit:

$$\langle L^{-}D_{q}^{+}|\mathcal{O}_{i}|\bar{B}_{q}^{0}\rangle = \sum_{j}F_{j}^{B\to D}(m_{L}^{2})\int_{0}^{1}du T_{ij}^{I}(u)\Phi_{L}(u) + \mathcal{O}(\Lambda_{QCD}/m_{b}),$$

[Beneke/Buchalla/Neubert/Sachrajda '00]

where $L^{-} \in \{\pi^{-}, K^{-}\}.$

$$\begin{split} F_{j}^{B \to D}(m_{L}^{2}) : \ \bar{B}_{q}^{0} \to D_{q}^{+} \ \text{form factor} \\ \Phi_{L}(u) : \ \text{light meson LCDA} \\ T_{ij}^{1}(u) : \ \text{hard-scattering kernel} \\ \mathcal{O}(\Lambda_{\text{QCD}}/m_{b}) : \ \text{power-suppressed contributions} \end{split}$$

Hard-Scattering Kernel

Hard-scattering kernels T_{ij}^{l} at $\mathcal{O}(\alpha_s)^{a}$ computed from vertex correction diagrams:

 ${}^{a}\mathcal{O}(lpha_{s}^{2})$ SM result is known [Huber/Kränkl/Li '16]

$$\langle L^{-}D_{q}^{+}|\mathcal{O}_{i}|\bar{B}_{q}^{0}\rangle = \\ \sum_{j} F_{j}^{B\to D}(m_{L}^{2}) \int_{0}^{1} du \ T_{ij}^{\dagger}(u) \Phi_{L}(u) + \mathcal{O}(\Lambda_{\text{QCD}}/m_{b})$$

Other diagrams

- 1. power-suppressed
- 2. included in non-perturbative input
- 3. not present due to flavor structure

The Puzzle

The Puzzle in $\bar{B}^0 \to D^+ K^-$ and $\bar{B}^0_s \to D^+_s \pi^-$ Decays

QCD factorization prediction within the Standard Model:

$$\mathcal{B} \left(\bar{B}^0 \to D^+ K^- \right) = (0.326 \pm 0.015) \cdot 10^{-3}$$
$$\mathcal{B} \left(\bar{B}^0_s \to D^+_s \pi^- \right) = (4.42 \pm 0.21) \cdot 10^{-3}$$

[Bordone/Gubernari/Huber/Jung/van Dyk '20]

experimental values:

$$\mathcal{B} \left(\bar{B}^0 \to D^+ K^- \right) = (0.186 \pm 0.020) \cdot 10^{-3}$$
$$\mathcal{B} \left(\bar{B}^0_s \to D^+_s \pi^- \right) = (3.00 \pm 0.23) \cdot 10^{-3}$$

PDG/LHCb/Belle/BaBar/CLEO/ARGUS

$$\Downarrow$$
 strong tension in $\bar{B}^0_s \to D^+_s \pi^-$ and $\bar{B}^0 \to D^+ K^-$

Possible Explanations for the Puzzle

$$\langle L^{-}D_{q}^{+}|\mathcal{O}_{i}|\bar{B}_{q}^{0}\rangle = \sum_{j}F_{j}^{B\to D}(m_{L}^{2})\int_{0}^{1}du T_{ij}^{I}(u)\Phi_{L}(u) + \mathcal{O}(\Lambda_{\text{QCD}}/m_{b})$$

1. Large non-factorizable contributions :

- $\mathcal{O}(15-20\%)$ at amplitude level necessary
- disfavored by LCSR estimate

2. Experimental issue:

- only charged final state particles
- would imply problems in several consistent measurements

3. Shift in parametric inputs:

- ► V_{cb}, V_{us}, V_{ud} well known
- shift would violate CKM unitarity
- 4. New physics: only possibility left, but is it viable?

unlikely

[Bordone/Gubernari/Huber/Jung/van Dyk '20]

unlikely

unlikely

New Physics as Explanation for the Puzzle

BSM interpretation studied in literature

[Cai et al. '21]

one-loop hard-scattering kernels for the full basis of BSM operators

► fit to
$$R_{(s)L}^{(*)} = \frac{\Gamma(\bar{B}_{(s)}^0 \to D_{(s)}^{(*)+}L^-)}{d\Gamma(\bar{B}_{(s)}^0 \to D_{(s)}^{+(*)}\ell^- \bar{\nu}_\ell)/dq^2|_{q^2 = m_L^2}}$$
 with one and two allowed BSM contributions

Only some vector and scalar Dirac structures can explain data

Possible Problems with [Cai et al. '21]

$$\langle L^{-}D_{q}^{+}|\mathcal{O}_{i}|\bar{B}_{q}^{0}\rangle = \sum_{j} F_{j}^{B\to D}(m_{L}^{2}) \int_{0}^{1} du T_{ij}^{I}(u) \Phi_{L}(u) + \mathcal{O}(\Lambda_{\text{QCD}}/m_{b})$$

- 1. renormalization scheme used for the calculation not explicitly stated
- 2. power suppressed contributions from three-particle states not discussed
- 3. for some operators no published results for the $m_c
 ightarrow 0$ limit

 \Downarrow

my goal:

- recalculate one-loop hard-scattering kernels
- calculate power suppressed contributions

Results

Hard-Scattering Kernels

recalculated all twenty hard-scattering kernels and found agreement with literature [Cai et al. '21]

renormalization scheme stated explicitly, consistent with other existing calculations

• checked $m_c \rightarrow 0$ limit

[Beneke, Buchalla, Neubert, Sachrajda '01], [Beneke, Neubert '03]

Three-Particle States

contribution from three-particle light meson state :

non-zero contributions only for vector and tensor operators:

- vector: $m_c \rightarrow 0$ limit differs by 1/N compared to literature [Beneke, Buchalla, Neubert, Sachrajda '00]
 - tensor: contributions are highly suppressed

- 1. three-particle states are under control in and beyond the Standard Model
- 2. decays even cleaner than assumed

Pheno-Analysis

- pheno-analysis is being performed with EOS
- tree-level and one-loop results implemented in EOS
- three-particle contributions are work in progress
- fit: plan to fit all 20 WC simultaneously with ~ 40 parameters related to form-factors and ~ 10 parameters related to the experimental branching ratios

[van Dyk et al. '21]

Summary and Outlook

- B-mesons are interesting laboratories for new physics
- some tensions with SM predictions persist
- SM predictions for B
 (s) → D⁺(s){π[−], K[−]} BRs are way off → possible new physics?
- calculated one-loop hard-scattering kernels for all twenty operators and found agreement with literature
- calculated contributions from three parton light meson states \rightarrow found 1/N discrepancy in SM result
 - ightarrow found 1/N discrepancy in SM result
 - \rightarrow three particle BSM contributions highly suppressed
- perform more exhaustive pheno-analysis

Non-Leading Fock State - Twist 3 and Twist 4 LCDAs Twist 3:

$$\langle L^{-}(q)|\,\bar{q}(0)\sigma_{\mu\nu}\gamma_{5}g_{s}G_{\alpha\beta}(\nu x)u(0)\,|0\rangle = if_{3L}[(q_{\alpha}q_{\mu}g_{\beta\nu}-q_{\beta}q_{\mu}g_{\nu\alpha})-(\mu\leftrightarrow\nu)]\int \mathcal{D}ue^{i\nu u_{3}q\cdot x}\phi_{3L}(u_{i})$$

Twist 4:

4

$$\begin{split} \langle L^{-}(q) | \, \bar{q}(0) \gamma_{\mu} \gamma_{5} g_{s} G_{\alpha\beta}(vx) u(0) | 0 \rangle = f_{L} \int \mathcal{D}u \, e^{ivu_{3}q \cdot x} \Biggl\{ \left[q_{\beta} g_{\alpha\mu} - q_{\alpha} g_{\beta\mu} \right] \phi_{\perp}(u_{i}) \\ &+ \left[\frac{q_{\mu} q_{\alpha} x_{\beta}}{q \cdot x} - \frac{q_{\mu} q_{\beta} x_{\alpha}}{q \cdot x} \right] \left(\phi_{\parallel}(u_{i}) + \phi_{\perp}(u_{i}) \right) \Biggr\} \\ \langle L^{-}(q) | \, \bar{q}(0) \gamma_{\mu} g_{s} \tilde{G}_{\alpha\beta}(vx) u(0) | 0 \rangle = if_{L} \int \mathcal{D}u \, e^{ivu_{3}q \cdot x} \Biggl\{ \left[q_{\beta} g_{\alpha\mu} - q_{\alpha} g_{\beta\mu} \right] \tilde{\phi}_{\perp}(u_{i}) \\ &+ \left[\frac{q_{\mu} q_{\alpha} x_{\beta}}{q \cdot x} - \frac{q_{\mu} q_{\beta} x_{\alpha}}{q \cdot x} \right] \left(\tilde{\phi}_{\parallel}(u_{i}) + \tilde{\phi}_{\perp}(u_{i}) \right) \Biggr\} \end{split}$$

Matching and Renormalization Group Running

Hard-Scattering Kernels - Calculation

$$\langle D_{(s)}^{+}L^{-}|Q_{1}^{i}|\bar{B}_{(s)}^{0}\rangle_{1-\text{gluon}} = -ig_{s}^{2}\frac{C_{F}}{N}\int \frac{d^{4}k}{(2\pi)^{4}} \langle D_{(s)}^{+}|\bar{c}A_{1}^{i}(k)b|\bar{B}_{(s)}^{0}\rangle \frac{1}{k^{2}}\int_{0}^{1}du \operatorname{Tr}\left[M^{L}(u)A_{2}^{i}(uq,\bar{u}q,k)\right],$$

with

$$\begin{aligned} A_{1}^{i}(k) &= \gamma^{\beta} \frac{\not{p}_{c} - \not{k} + m_{c}}{2p_{c} \cdot k - k^{2}} \Gamma_{1}^{i} - \Gamma_{1}^{i} \frac{\not{p}_{b} + \not{k} + m_{b}}{2p_{b} \cdot k + k^{2}} \gamma^{\beta} ,\\ A_{2}^{i}(l_{q}, l_{\bar{q}}, k) &= \Gamma_{2}^{i} \frac{\not{I}_{\bar{q}} + \not{k}}{2l_{\bar{q}} \cdot k + k^{2}} \gamma_{\beta} - \gamma_{\beta} \frac{\not{I}_{q} + \not{k}}{2l_{q} \cdot k + k^{2}} \Gamma_{2}^{i} ,\\ M_{\alpha\delta}^{L} &= \frac{if_{L}}{4} \left\{ \not{q} \gamma_{5} \phi_{L}(u) - \mu_{P} \gamma_{5} \left(\phi_{P}(u) - i\sigma_{\mu\nu} n_{+}^{\mu} n_{-}^{\nu} \frac{\phi_{\sigma}'(u)}{12} + i\sigma_{\mu\nu} q^{\mu} \frac{\phi_{\sigma}(u)}{6} \frac{\partial}{\partial l_{q \perp \nu}} \right) \right\} \delta_{\alpha} .\\ \phi_{L} : \text{twist-2, vector operators} \\ \phi_{P} , \phi_{\sigma} : \text{twist-3, scalar/tensor operators} \end{aligned}$$

20 / 20

Likelihood

measurement	value	source	reference(s)
$\mathcal{B}(B_s^0 \to D_s^- \pi^+)$	$(3.6 \pm 0.5 \pm 0.5) 10^{-3}$	Belle	[15, 21]
$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to D_s^-(\to \phi(\to K^+K^-)\pi^-)\pi^+)}{\mathcal{B}(B^0 \to D^-(\to K^+\pi^-\pi^-)\pi^+)}$	$(6.7\pm0.5)\%$	CDF	[41]*
$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to D_s^-(\to K^+ K^- \pi^-)\pi^+)}{\mathcal{B}(B_s^0 \to D^-(\to K^+ \pi^- \pi^-)\pi^+)}$	0.174 ± 0.007	LHCb	[42]
$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to D_s^-(\to K^+ K^- \pi^-)\pi^+)}{\mathcal{B}(B^0 \to D^-(\to K^+ \pi^- \pi^-)K^+)}$	2.08 ± 0.08	LHCb	$[25]^{\dagger}$
$\frac{\mathcal{B}(B^0 \to D^- K^+)}{\mathcal{B}(B^0 \to D^- \pi^+)}$	$(8.22 \pm 0.28)\%$	LHCb	$[25]^{\dagger}$
$\frac{\mathcal{B}(B^0 \to D^- K^+)}{\mathcal{B}(B^0 \to D^- \pi^+)}$	$(6.8 \pm 1.7)\%$	Belle	[43]
$f_{00}\mathcal{B}(B^0 \to D^-(\to K^+\pi^-\pi^-)\pi^+)$	$(1.21 \pm 0.05) 10^{-4}$	BaBar/CLEO	[24, 44]
$\mathcal{B}(B^0 \to D^-(\to K^+\pi^-\pi^-)\pi^+)$	$(2.88 \pm 0.29) 10^{-4}$	BaBar	$[45]^{\$}$
$\frac{\mathcal{B}(B_s^0 \to D_s^{*-}\pi^+)}{\mathcal{B}(B_s^0 \to D_s^-\pi^+)}$	0.66 ± 0.16	Belle	[46]
$\frac{\mathcal{B}(B^0 \to D^{*-}K^+)}{\mathcal{B}(B^0 \to D^{*-}\pi^+)}$	$(7.75 \pm 0.30)\%$	LHCb/BaBar/Belle	[43,47,48]
$f_{00}\mathcal{B}(B^0 o D^{*-}\pi^+)$	$(2.72 \pm 0.14) 10^{-3}$	BaBar/CLEO	[24, 49]
$\frac{\mathcal{B}(B^0 \to D^{*-}\pi^+)}{\mathcal{B}(B^0 \to D^-\pi^+)}$	0.99 ± 0.14	BaBar	[45]
${\cal B}(D^s\to\phi(\to K^+K^-)\pi^-)$	$(2.27 \pm 0.08)\%$	PDG average	[15]
$\mathcal{B}(D_s^- \to K^+ K^- \pi^-)$	$(5.45 \pm 0.17)\%$	PDG average	[15]
$\mathcal{B}(D^- \to K^+ \pi^- \pi^-)$	$(9.38 \pm 0.16)\%$	PDG average	[15]
$\mathcal{B}(D_s^- \to K^+ K^- \pi^-) (f_s/f_d)_{\rm LHCb,sl}^{7 {\rm TeV}}$	0.0144 ± 0.0010	LHCb	[22, 23]
$\mathcal{B}(D_s^- \rightarrow K^+ K^- \pi^-)(f_s/f_d)^{13\text{TeV}}_{\text{LHCb,sl}}$	0.0133 ± 0.0005	LHCb	[50]
$(f_s/f_d)_{\rm Tev}$	0.334 ± 0.040	HFLAV average	[29]
foo	0.488 ± 0.010	pheno comb. of BaBar/Belle	[40,51,52]

[Bordone/Gubernari/Huber/Jung/van Dyk '20]

Fit Results

source	PDG	our fits (w	/o QCDF)	our fit (w/ Q	CDF, no f_s/f_d)	QCDF prediction
scenario		no f_s/f_d	$(f_s/f_d)^{7 \text{ TeV}}_{ m LHCb, sl}$	ratios only	<u>SU(3)</u>	
χ^2/dof		2.5/4	3.1/5	4.6/6	3.7/4	
$\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-)$	3.00 ± 0.23	3.6 ± 0.7	3.11 ± 0.25	$3.11^{+0.21}_{-0.19}$	$3.20^{+0.20}_{-0.26}$ *	4.42 ± 0.21
$\mathcal{B}(B^0 \to D^+ K^-)$	0.186 ± 0.020	0.222 ± 0.012	0.224 ± 0.012	0.227 ± 0.012	0.226 ± 0.012	0.326 ± 0.015
$\mathcal{B}(\bar{B}^0 \to D^+ \pi^-)$	2.52 ± 0.13	2.71 ± 0.12	2.73 ± 0.12	2.74 ± 0.12	$2.73^{+0.12}_{-0.11}$	
${\cal B}(\bar B^0_s\to D^{*+}_s\pi^-)$	2.0 ± 0.5	2.4 ± 0.7	2.1 ± 0.5	$2.46^{+0.37}_{-0.32}$	$2.43\substack{+0.39\\-0.32}$	$4.3^{+0.9}_{-0.8}$
${\cal B}(B^0\to D^{*+}K^-)$	0.212 ± 0.015	0.216 ± 0.014	0.216 ± 0.014	$0.213\substack{+0.014\\-0.013}$	$0.213^{+0.014}_{-0.013}$	$0.327\substack{+0.039\\-0.034}$
$\mathcal{B}(\bar{B}^0 \to D^{*+}\pi^-)$	2.74 ± 0.13	2.78 ± 0.15	2.79 ± 0.15	$2.76^{+0.15}_{-0.14}$	$2.76\substack{+0.15 \\ -0.14}$	
$\mathcal{R}^P_{s/d}$	16.1 ± 2.1	16.2 ± 3.3	14.0 ± 1.1	13.6 ± 0.6	$14.2^{+0.6}_{-1.1}$ *	$13.5^{+0.6}_{-0.5}$
$\mathcal{R}^V_{s/d}$	9.4 ± 2.5	11.4 ± 3.6	9.6 ± 2.5	$11.4^{+1.7}_{-1.6}$	$11.4^{+1.7}_{-1.5}$ *	$13.1^{+2.3}_{-2.0}$
$\mathcal{R}^{ec{V}/P}_{s}$	0.66 ± 0.16	0.66 ± 0.16	0.66 ± 0.16	$0.81\substack{+0.12\\-0.11}$	$0.76\substack{+0.11\\-0.10}$	$0.97\substack{+0.20\\-0.17}$
$\mathcal{R}_{d}^{V/P}$	1.14 ± 0.15	0.97 ± 0.08	0.97 ± 0.08	0.97 ± 0.06	0.95 ± 0.07	1.01 ± 0.11
$(f_s/f_d)_{ m LHCb}^{7~{ m TeV}}$		$0.223^{+0.056}_{-0.038}$ *	0.260 ± 0.019	$0.261\substack{+0.018\\-0.016}$	$0.252^{+0.023}_{-0.015}$ *	
$(f_s/f_d)_{ m Tev}$		$0.208^{+0.056}_{-0.038}$ *	0.243 ± 0.028	$0.244^{+0.026}_{-0.023}$	$0.236^{+0.026}_{-0.022}$ *	
Δ_P	_	_		$-0.164^{+0.030}_{-0.028}$	-0.167 ± 0.029	_
Δ_V				$-0.20\substack{+0.06\\-0.05}$	$-0.20\substack{+0.06\\-0.05}$	

[Bordone/Gubernari/Huber/Jung/van Dyk '20]