Neutron-Induced Reactions in a High-Density Inertial Confinement Plasma and Their Nuclear Astrophysics Nexus

Michael Paul The Hebrew University of Jerusalem, S. Bhattacharya¹, MP¹, R. N. Sahoo¹, D. Casey², Ch. Cerjan², J. Jeet²,
C. Velsko², A. Zylstra², M. Avila³, E. Lopez³, J.C. Dickerson³, C. Fougères³,
J. McLain³, R. C. Pardo³, K. E. Rehm³, R. Scott³, I. Tolstukhin³, R. Vondrasek³,
M. Tessler⁴, S. Vaintraub⁴, T. Bailey⁵, L. Callahan⁵, A. M. Clark⁵, P. Collon⁵,
Y. Kashiv⁵, D. Robertson⁵, U. Koester⁶, H.F.R. Hoffmann⁷, M. Pichotta⁷,
K. Zuber⁷, T. Doering⁸, R. Schwengner⁸, R. Purtschert⁹,

PHYSICAL REVIEW

VOLUME 119, NUMBER 6

SEPTEMBER 15, 1960

Heavy Isotope Abundances in Mike Thermonuclear Device*

H. DIAMOND, P. R. FIELDS, C. S. STEVENS, M. H. STUDIER, S. M. FRIED, M. G. INGHRAM, D. C. HESS, G. L. PYLE[†], J. F. MECH, AND W. M. MANNING Argonne National Laboratory, Lemont, Illinois

AND

A. GHIORSO, S. G. THOMPSON, G. H. HIGGINS, AND G. T. SEABORG Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California

AND

C. I. BROWNE, H. L. SMITH, AND R. W. SPENCE Los Alamos Scientific Laboratory, Los Alamos, New Mexico (Received May 2, 1960) The High-Density Plasma at National Ignition Facility

The closest analog to *explosive stellar conditions* in the laboratory and in particular the closest laboratory *neutron analog to astrophysical r-process*

A. Zylstra et al. (2022) H. Abu-Shawareb et al (2024)

Ch. J. Cerjan et al. (2018)

N221204: ignition achieved 3.1 MJ fusion yield / 2.05 MJ 351nm laser light

experimental neutron tomographic reconstruction

Abu-Shawareb et al., PRL (2024)

Discovery Science proposal P-000523: "A noble-gas accelerator mass spectrometry platform at NIF for nuclear astrophysics" :

introduce seeds of Ar in DT fuel and observe (*n*,2*n*) and neutron capture reactions

Shot N221002 192 laser beams 1.2 MJ, 390 TW

Discovery Science proposal P-000523: "A noble-gas accelerator mass spectrometry platform at NIF for nuclear astrophysics" :

introduce seeds of Ar in DT fuel and observe (*n*,2*n*) and neutron capture reactions

⁴²**Ar** motivation: ⁴⁰Ar(2n,γ)⁴²Ar, a "mini-r" process

Choice of Ar:

- three long-lived neutron induced products: ³⁹Ar(268 y), ⁴¹Ar(110 min), ⁴²Ar(33y)
- Ar is a noble gas: can be reliably collected using a stable ³⁸Ar carrier
- ^{39,42}Ar detection at ultra-high sensitivity by atom counting

A hypothesis: could neutron capture occur on an excited/isomeric state?

See also: M. Winter ⁴¹Ar MSc Thesis (2024), U. Jyvaskyla.

E (level) (keV)	XREF	J ⁿ (level)	T _{1/2} (level)	<mark>Ε (γ)</mark> (keV)
0	ABCDEFG	7/2-	109.61 m 4 $8 \beta^- = 100$	
167.11 <i>9</i>	ABCDEFG	5/2-	315 ps 15	167.1 <i>1</i>
515.77 15	ABCD FG	3/2-	0.26 ns 8	348.7 <i>2</i> 516.0 <i>3</i>
1033.94 16	ABCD FG	3/2+	5 ps +28-3	517.9 <i>3</i> 866.7 <i>2</i>

⁴¹Ar low-lying levels

⁴²Ar

Atom counting with noble gas accelerator mass spectrometry (NOGAMS) at ATLAS (Argonne): a brief

NIF shot N221002: 22 Oct 2022

⁴⁰Ar(n,2n)³⁹Ar measured

NIF shot N221002: 22 Oct 2022 ⁴²Ar detected (Nov 2024)

Ca41	Ca42	Ca43	Ca44	Ca45	Ca46
7/2-	0+	7/2-	0+	7/2-	0+
EC	0.647	0.135	2.086	β-	0.004
K40	K41	K42	K43	K44	K45
4-	3/2+	2-	3/2+	2-	3/2+
EC,β- 6,0117	6.7302	β-	β-	β-	β-
Ar39	Ar40	It nl	Ar42	Ar43	Ar44
7/2-	0+	THPT	0+	(3/2,5/2)	0+
β-	99.600	β-		3-	β·
C138 37.24 m	C139 55.6 m	C140 1.35 m	Cl41 38.4 s	C142 6.8 5	Cl43 335
2.	3/2+	2-	(1/2,3/2)+		
β-	β-	β-	β-	β-	β-

Presently considered scenario: (within 160 ps)

D +T $\rightarrow n + \alpha$: E_n ~ 14 MeV n + T -> T + n: $E_T \sim 10 \text{ MeV}$ tertiary reaction in flight T + ${}^{40}Ar \rightarrow p + {}^{42}Ar : {}^{40}Ar(t,p) {}^{42}Ar$ σ (TALYS 2.03)) ~ 20 mb (not experimentally measured) Present scenario:

D+T -> n + α : E_n ~ 14 MeV tertiary reaction in flightn + T $-> t + n : E_T \sim 10 \text{ MeV}$ (within 160 ps) $T + {}^{40}\text{Ar} -> p + {}^{42}\text{Ar} : {}^{40}\text{Ar}(t,p) {}^{42}\text{Ar}$

avat

	inary
preli.	

Ca41	Ca42	Ca43	Ca44	Ca45	Ca46
7/2-	0+	7/2-	0+	7/2-	0+
EC	0.647	0.135	2.086	β-	0.004
K40 1.277E+9 y	K41	K42 12.360 h	K43 22.3 h	K44 22.13 m	K45 17.3 m
4	3/2+	2-	3/2+	2-	3/2+
EC,B	6.7302	β-	β-	β-	β-
Ar39 269 y	Ar40	Ar41 109.34 m	Ar42 32.9 v	Ar43 5.37 m	Ar44 11.87 m
7/2-	0+	7/2-	0+	(3/2,5/2)	0+
β-	99.600	β-		3-	β-
Cl38 37.24 m 2-	Cl39 55.6 m 3/2+	Cl40 1.35 m 2-	Cl41 38.4 s (1/2,3/2)+	C142 6.8 s	CI43 3.3 s
β. *	β-	B-	β-	B-	β-

	New-HIDRA	expl.
T:H:D	50:00:50	
DT-n Yield	2.01E+15	1.49e15(NIF monitors)
38Ar	4.64E+04	
39Ar	1.20E+10	2.8 e10 (NOGAMS)
41Ar	7.73E+06	2.0 e7 (γ spect., NIF)
42Ar	8.45E+05	1.6 e6 (NOGAMS)
40K	3.88E+07	
41K	1.39E+07	
42K	5.96E+06	
39C1	1.71E+05	
40C1	2.71E+08	
375	1.31E+08	

Summary

- Quantitative determination of neutron induced reaction yields on ⁴⁰Ar seeds in a stellar-like high-density plasma
- 2. The origin of the ⁴²Ar events observed is attributed *mainly* to a charged-particle reaction in flight, first time observed:

 $d(t,\alpha)n(t,n)t({}^{40}Ar,p){}^{42}Ar$

3. The implosion of a pure DD capsule is considered to search for a two-neutron capture reaction.

Thank you for your attention.

Preliminary results: N221002 ${}^{42}\text{Ar}/{}^{38}\text{Ar}$ = (1.0 ± 0.3) × 10⁻¹⁴ N(${}^{42}\text{Ar}$) = 1.6 ± 0.5 × 10⁶ atoms

- 11 counts of ⁴²Ar from TR5 sample during a 53.5-hour run: (1.0±0.3) ct/5 h
- ✤ 0 ⁴²Ar counts for ^{atm}Ar during a 25.9hour run: < 0.2 ct/5 h</p>

ILL2: ⁴²Ar NOGAMS calibration sample (2023)

⁴²Ar/Ar (NOGAMS) = $(1.09 \pm 0.12) \times 10^{-11}$ ⁴²Ar/Ar (activity+dilution) = $(1.16 \pm 0.05) \times 10^{-11}$

NOGAMS September Monthly Update

September 24, 2024

Best-to-date two-dimensional half-sphere HYDRA simulation for N221002 (DT-gas loaded Ar)

	N221002				
	Subscale Symcap	Experiment	Simulation		
	DT-n yield	1.49E+15	3.34E+15		
	N221002 Subscale Symcap DT-n yield Peak Burn (ns) DSR (%) T_{ion} (keV) Burnwidth (ps) Ar in gas fill 39Ar 41Ar 40Cl 42Ar 1.6(5) 38Ar 37S	6.87	6.87		
	DSR (%)	0.52	0.67		
	T _{ion} (keV)	4.31	4.02		
	Burnwidth (ps)	NA	162		
	Ar in gas fill	2.520E+15	2.522E+15		
	39Ar 2.8(1)e+10 4.00E+10	3.28621E+10		
incompatible	41Ar	2.00E+07	7.80998E+06		
	40Cl	NA	4.70612E+08		
with neutron	42Ar 1.60	5)e+6 NA	0.0755 (i.e. 0)		
capture unles	S				
$\sigma \sim \text{few 100b}$	38Ar	NA	2.21030E+05		
	37S	NA	2.29266E+08		
	39Cl	NA	3.13837E+05		

	N221002	N221002		T/D		
	T/D=50/50	50/0/50	80/20	70/30	20/80	30/70
DT-n Yield	1.49E+15	2.01E+15	1.49E+15	1.69E+15	1.76E+15	2.43E+15
39Ar	2.8(1)E+10	1.20E+10	9.35E+09	1.04E+10	1.03E+10	1.46E+10
41Ar	2.00E+07	7.73E+06	6.23E+06	9.34E+05	6.82E+06	9.70E+06
42Ar	1.6(5)E+06	8.45E+05	1.01E+06	6.55E+06	3.31E+05	7.21E+05
				1		
			0	ur next shot		
			F	all 2025,		
			W	e'll be back.		

new-HYDRA simulations: T/D ratio study

D + T -> α + n(~14 MeV) 14 MeV neutron capture on ⁴⁰Ar

Discovery Science proposal P-000523: "A noble-gas accelerator mass spectrometry platform at NIF for nuclear astrophysics" :

introduce seeds of Ar in DT fuel and observe (*n*,2*n*) and neutron capture reactions

Sc39	Sc40 182.3 ms	Sc41 596.3 ms	Sc42 681.3 ms	Sc43 3.891 h	Sc44 3.927 h	Sc45	Sc46 83.79 d	Sc47 3.3492 d
(//2-)	+- ΕCp,ΕCα,	EC	EC *	EC	EC *	* 100	4+ β-	β-
Ca38	Ca39	Ca40	Ca41	Ca42	Ca43	Ca44	Ca45	Ca46
0+	3/2+	0+	7/2-	0+	7/2-	0+	7/2-	0+
EC	EC	96.941	EC	0.647	0.135	2.086	β-	0.004
K37	K38	K39	K40	K41	K42	K43	K44	K45
3/2+	3+	3/2+	4-	3/2+	2-	3/2+	2-	3/2+
EC	EC	93.2581	EC,β-	6.7302	<u>β-</u>	R-	β-	β-
Ar36	Ar37	Ar38	Ar39	Ar40	Ar41	Ar42	Ar43	Ar44
0+	3/2+	0+	209 Y	0+	1 6,34 Ш 		(3/2,5/2)	0+
0.337	EC	0.063	3-	99.600	R-	B-	β-	β-
Cl35	Cl36	Cl3 7	Cl38	C139	Cl40	Cl41	Cl42	Cl43
3/2+	2+	3/2+	2-	3/2+	2-	(1/2,3/2)+	0.8 \$	5.5 8
75.77	EC,β-	24.23	β-	β-	β-	β-	β-	β-

Collection of reaction product atoms:

- inject a known volume of ³⁸Ar carrier in NIF chamber just after shot, pump chamber into a cryogenic trap system to separate Ar (Radiochemical Analysis of Gaseous Samples (RAGS) apparatus

The Radiochemical Analysis of Gaseous Samples (RAGS) apparatus

N221002-001-999 RAGS FLTR RGA DT HDC Au, stable and rad carriers

N221002 Ar sample

HYDRA simulation for a Ar-doped DT implosion at high power Ch. Cerjan, LLNL, private comm.

39Ar	2.706E+12
375	1.931E+10
41Ar	7.204E+08
39Cl	2.236E+08
40Cl	3.858E+10
38Ar	3.696E+09
365	2.080E+08
38Cl	2.456E+07
42Ar	1.550E+03

HYDRA simulations: Ch. Cerjan (LLNL)

- The primary implosion experiment simulation tool used for NIF experimental design and analysis.
 - ALE (Adaptive Lagrange-Euler)
 - Finite element based (quadrilateral in 2D or hexahedral elements in 3D)
 - Massively parallel
 - PYTHON user scripts may be readily linked.
- Physics capabilities are extensive.
 - Consistent numerical treatment of the hydrodynamic equations, diffusive radiation transport, and diffusive electron conduction.
 - Substantial flexibility exists for different EOS and conductivity model choices.
 - Implicit Monte Carlo photon transport.
 - Particle Monte Carlo neutron, charged particle, and gamma-ray generation and transport.
 - In-line or post-processing radiochemistry available (KUDU).
- A static three-dimensional model exists that correlates implosion diagnostics and quantifies the stagnation properties.

NOGAMS September Monthly Update

September 24, 2024

Best-to-date two-dimensional half-sphere HYDRA simulation for N221002 (DT-gas loaded Ar)

N221002	NIF diagnostics	
Subscale Symcap	Experiment	Simulation
DT-n yield	1.49E+15	3.34E+15
Peak Burn (ns)	6.87	6.87
DSR (%)	0.52	0.67
T _{ion} (keV)	4.31	4.02
Burnwidth (ps)	NA	162
Ar in gas fill	2.520E+15	2.522E+15
39Ar		3.28621E+10
41Ar		7.80998E+06
40Cl		4.70612E+08
42Ar		0.0755 (i.e. 0)
38Ar		2.21030E+05
37S		2.29266E+08
39Cl		3.13837E+05

Atom counting with noble gas accelerator mass spectrometry (NOGAMS) at ATLAS (Argonne): a brief

A test experiment: ^{39}Ar detection $^{38}\text{Ar}(n,\gamma)^{39}\text{Ar}$ with thermal neutrons from Soreq nuclear reactor

Auxilliary experiment: ⁴⁰Ar(n,2n)³⁹Ar first cross section measurement (14 MeV) at TU Dresden/Helmholtz Zenter Dresden Rossendorf

 $T(D,n)^4$ He reaction at Rossendorf (HZDR) ~6.6(1)×10¹¹ 14 MeV ncm⁻² content : ⁴⁰Ar (5N) gas 4.5 hours

sphere: stainless steel volume: 4.18 cm³ pressure: 20 bar

fast-neutron monitors: ²⁷Al, ⁹³Nb

Auxilliary experiment: ⁴⁰Ar(n,2n)³⁹Ar first cross section measurement (14 MeV) at TU Dresden/Helmholtz Zenter Dresden Rossendorf

NOGAMS September Monthly Update

September 24, 2024

Best-to-date two-dimensional half-sphere HYDRA simulation for N221002 (DT-gas loaded Ar)

	N221002		
	N221002 Subscale Symcap DT-n yield Peak Burn (ns) DSR (%) T_{ion} (keV) Burnwidth (ps) Ar in gas fill 39Ar 2.8 39Ar 2.8 39Ar 40Cl 42Ar 38Ar 37S	Experiment	Simulation
	DT-n yield	1.49E+15	3.34E+15
	Peak Burn (ns)	6.87	6.87
	DSR (%)	0.52	0.67
	T _{ion} (keV)	4.31	4.02
	Burnwidth (ps)	NA	162
	Ar in gas fill	2.520E+15	2.522E+15
	39Ar 2.8(*	1)e+10 4.00E+10	3.28621E+10
measured by γ spect,	41Ar (β ⁻ ,110 min)	2.00E+07	7.80998E+06
after shot, 41K line	40Cl		4.70612E+08
at 1294 keV	42Ar		0.0755 (i.e. 0)
	38Ar		2.21030E+05
	378		2.29266E+08
	39Cl		3.13837E+05

after quantitative dilution with ^{nat}Ar: 42 Ar/ 40 Ar (ILL2 calibration sample): = (1.16 ± 0.05) × 10⁻¹¹

ILL2 shipped to Argonne for NOGAMS

ILL2 sample at Argonne: ⁴²Ar tuning

NIF sample N221002: 2023 experiment, same ⁴²Ar setting

Nov '24 experiment: dedicated to ⁴²Ar search

Timeline:

-11/11-20: Ion source was run with UHP (Ultra-High Purity) Ar gas and ⁴⁰Ar⁸⁺ monitored at ECR3 cup

-11/20-24: sample TR5B (NIF N221002), ⁴²Ar running, 53.5 h

-11/24-26: sample ^{nat}Ar (see below), ⁴²Ar running, 25.9 h

-11/26: ILL2 ⁴²Ar calibration sample, ²¹Ne , ⁴²Ar running.

Preliminary results summary

- ⁴²Ar unambiguously identified in sample N221002:

 $N(^{42}Ar) = 1.6 \pm 0.5 \times 10^{6}$ atoms

Extraneous presence of ⁴²Ar or crosstalk effects are ruled out.

- 42 Ar calibration sample ILL2 OK: calibration (activity+dilution): 42 Ar/ 40 Ar= (1.17 ± 0.05) × 10⁻¹¹

NOGAMS: 42 Ar/ 40 Ar= (1.09 ± 0.12) × 10⁻¹¹

⁴²Ar: a "rare" nuclide

R. W. Stoenner, O. A. Schaeffer, S. Katcoff, Science (1965)

Half-Lives of Argon-37,

Argon-39, and Argon-42

Abstract. The half-lives of three argon isotopes have been carefully determined, with the following results: Ar^{37} 35.1 ± 0.1 days; Ar^{39} , 269 ± 3 years Ar^{42} , 32.9 ± 1.1 years. By combining the Ar^{42} value with earlier data, a cross section of 0.5 ± 0.1 barn is calculated for the reaction, with thermal neutrons, $Ar^{41}(n,\gamma)Ar^{42}$.

Sc39 (7/2-)	Sc40 182.3 ms 4-	Sc41 596.3 ms 7/2-	Sc42 681.3 ms 0+	Sc43 3.891 h 7/2-	Sc44 3.927 h 2+	Sc45	Sc46 83.79 d 4+	Sc47 3.3492 d 7/2-
	ECp,ECα,	EC	EC *	EC	* EC	* 100	β-	β-
Ca38	Ca39	Ca40	Ca41	Ca42	Ca43	Ca44		Ca46
0+	3/2+	0+	7/2-	0+	7/2-	0+	7/2-	0+
EC	EC	96.941	EC	0.647	0.135	2.086	β-	0.004
K37	K38	K39	K40	K41	K42	K43	K44	K45
1.220 s 3/2+	7.050 m 3+	3/2+	1.277E+9 y 4-	3/2+	12.300 ft 2-	22.5 n 3/2+	22.15 m 2-	3/2+
EC	EC *	93.2581	EC,β- 0.0117	6.7302	β-	β-	β-	β-
Ar36	Ar37	Ar38	Ar39	Ar40	Ar41	Ar42	Ar43	Ar44
0+	3/2+	0+	209 y 7/2-	0+	7/2-	52.9 y 0+	(3/2,5/2)	0+
0.337	EC	0.063	β-	99.600	β-		3-	β-
Cl35	Cl36	Cl37	C138	Cl39	C140	Cl41	Cl42	C143
3/2+	3.01E+5 y 2+	3/2+	37.24 m 2-	3/2+	1.35 m 2-	(1/2,3/2)+	0.8 5	3.3 \$
75.77	EC,β−	24.23	β-	β-	β-	β-	β-	β-

⁴²A is extremely rare in nature

⁴²Ar/Ar in Earth atmosphere: 42 Ar/Ar= 9.2 ${}^{+2.2}_{-4.6} \times 10^{-21}$ (Barabash et al., 2016)

Neutron-induced reactions in a high-density inertial confinement plasma at National Ignition Facility

- neutrons?
- high-density plasma?
- National Ignition Facility?
- proposal, experiment, results: a progress report