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GCE models
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(GCE) models

• [X/Fe] vs [Fe/H] -> Fe is important
• Need to understand iron-peak production
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Rare type of CCSN where magnetic

and rotational effects play an 
important role
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GCE models
• Standard Galactic Chemical Evolution 

(GCE) models

• [X/Fe] vs [Fe/H] -> Fe is important
• Need to understand iron-peak production

• NLTE: changes GCE model understanding

• Neutron-capture elements
• Slow (s-) and rapid (r-) processes

• Sites with high neutron densities

• Differences to observations:
• GCE problems?

• Inaccurate observations?
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Our approach: 3D RHD NLTE

• Get 3D NLTE corrections for 1D LTE 
literature abundances
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Our approach: 3D RHD NLTE

• Get 3D NLTE corrections for 1D LTE 
literature abundances

• Why 3D NLTE?
• Stars are 3D objects (not 1D!)

• Use 3D radiation-hydrodynamic model 
atmospheres
• Validated and analysed in previous works, e.g. but 

not limited to Bergemann+19 & 21, Gallagher+20, 
Eitner+24, Storm+24, Guiglion+25
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• Using developed NLTE atomic models
• Grotrian diagram

• See also Magg+22, Gerber+23

• Tested on wide range of stellar parameters

• See e.g. 
• Mn: Bergemann+19, Eitner+23, Ni: Bergemann+21, 

Magg+22, Y, Eu: Storm+23,24
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Results
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3D NLTE effect on the line strength

• Example of one nickel line fit
•  HD 84937 (teff = 6350, log = 4.1, 

[Fe/H] = -2.1)

• 3D NLTE line is much weaker

• Thus derived 3D NLTE abundance 
higher than 1D LTE
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Difference between 3D NLTE and 1D LTE abundances
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Effect on abundances
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1D LTE literature abundances
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1D LTE Now binned
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3D NLTE: higher abundance
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Comparison to GCE
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Ni 3D NLTE

• Our “baseline” GCE model
• OMEGA+ (Cote+ 17, 18)

• CCSN yields
• Limongi & Chieffi 2018

• GCE trend is flat

• 3D NLTE 
• Increasing trend with lower 

[Fe/H] 

• GCE does not reproduce
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Ni 3D NLTE

• Different explanation needed
• Need CCSN simulations in 3D at 

low [Fe/H]?
• Not explored very extensively in 

literature so far

• 3D effects important for iron-peak 
yields in CCSN, see e.g. Wanajo+11
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Ni 3D NLTE

• Different explanation needed
• Need CCSN simulations in 3D at 

low [Fe/H]?
• Not explored very extensively in 

literature so far

• 3D effects important for iron-peak 
yields in CCSN, see e.g. Wanajo+11

• Or another production site?
• ECSN?

• Models predict higher Ni/Fe 
yields (Nomoto+87; Wanajo+18; 
Zha+22)

• Need more bottom-heavy IMF in 
the early Galaxy?
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Ni 3D NLTE

• See also recent JWST observations 
of Crab Nebula (ECSN or low-mass 
CCSN remnant?)
• [Ni/Fe] 3-5 larger than solar ones 

(Temim+24)
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Conclusions
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Conclusions
• 3D NLTE is necessary to provide robust chemical 

abundances, as the models are parameter-free 
• No mixing-length, no assumption of Saha-Boltzmann equilibrium, 

no Vmic 

• See e.g. Bergemann+19, Lind & Amarsi+24

• Iron-peak elements
• GCE models of the disc (OMEGA+) based on state-of-the-art yields 

(Limongi & Chieffi 2018) do not explain the chemical evolution of 
Fe-group elements

• CCSN-dominated regime is under-produced in the GCE tracks

• ECSN have [Ni/Fe] >> 0, which could help? (Wanajo+18)

• More elements are also done: Mn, Co, Ni, Sr, Y, Ba, Eu (see 
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Bonus slides
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Iron-peak elements 3D NLTE
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