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GCE models

e Standard Galactic Chemical Evolution
(GCE) models
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I GCE all sites

GCE models
= explosions of massive stars

¢ Sta N da rd Ga I d Cth Che m |Ca| EVO I utlo N ) mmmm explosions of white dwarfs (mergers, transients+)
(GCE) models
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GCE models

e Standard Galactic Chemical Evolution | S ————— 1S, transients+)
(GCE) models

Massive star supernovae, earlier in the galaxy
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I GCE all sites

GCE models
= cxplosions of massive stars

¢ Sta N da rd Ga I d Cth Che m |Ca| EVO I utlo N ' explosions of white dwarfs (mergers, transients+)
(GCE) models

Supernovae Type la of white dwarfs in binaries,
later in the galax
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I GCE all sites

GCE models
. . . ) = explosions of massive stars
¢ Sta N da rd Ga I actic Che m |Ca| EVO I ution mmmm explosions of white dwarfs (mergers, transients+)
(GCE) models

» [X/Fe] vs [Fe/H] -> Fe is important
* Need to understand iron-peak production
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GCE models

e Standard Galactic Chemical Evolution
(GCE) models 00F —— GCE:SNIl, 21 # 3% sub — Mcy,

* [X/Fe] vs [Fe/H] -> Fe is important
* Need to understand iron-peak production
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GCE models

* Standard Galactic Chemical Evolution
(GCE) models
* [X/Fe] vs [Fe/H] -> Fe is important
* Need to understand iron-peak production
 NLTE: changes GCE model understanding
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GCE models

I GCE all sites

) Standard GaIaCtIC Chemlcal EVOIUtlon i m— cxplosions of massive stars + MRSN
(G C E) m Od e |S mmmm neutron star mergers

m— gsymptotic giant branch

» [X/Fe] vs [Fe/H] -> Fe is important -
* Need to understand iron-peak production |
 NLTE: changes GCE model understanding

* Neutron-capture elements
 Slow (s-) and rapid (r-) processes
* Sites with high neutron densities
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GCE models

I GCE all sites

e Standard Galactic Chemical Evolution | oo ot hassive stars
(GCE) mOdE|S mmmm neutron star mergers

— gsymptotic giant brangh

* [X/Fe] vs [Fe/H] -> Fe is important -
* Need to understand iron-peak production |
 NLTE: changes GCE model understanding

* Neutron-capture elements
 Slow (s-) and rapid (r-) processes
* Sites with high neutron densities

Magnetorotational SNe —
Rare type of CCSN where magnetic
and rotational effects play an

important role
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GCE models

. . . 3 all sites
e Standard Galactic Chemical Evolution O e ctore 4 MRSN
'
(GCE) mOdE|S == asymptotic giant branch

* [X/Fe] vs [Fe/H] -> Fe is important
* Need to understand iron-peak production
 NLTE: changes GCE model understanding

* Neutron-capture elements
 Slow (s-) and rapid (r-) processes
* Sites with high neutron densities

NSM mergers —
r-process site, later in galaxy?
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GCE models

I GCE all sites

* Standa rd GaIaCt|C Chemlcal EVOIUtlon | m— cxplosions of massive stars + MRSN

mmmm neutron star mergers
(G CE) models

* [X/Fe] vs [Fe/H] -> Fe is important
* Need to understand iron-peak production
 NLTE: changes GCE model understanding

* Neutron-capture elements
 Slow (s-) and rapid (r-) processes
* Sites with high neutron densities

Low and intermediate mass stars,
later in the galaxy

storm@ mpia.de 21



GCE models

B GCE all sites

¢ Sta n da rd Ga I aCtiC Che m ical EVO I Utio n m— cxplosions of massive stars
(G CE) mOd e |S , mmmm explosions of white dwarfs (mergers, transients+)

® 1D LTE measurements

* [X/Fe] vs [Fe/H] -> Fe is important
* Need to understand iron-peak production
 NLTE: changes GCE model understanding

* Neutron-capture elements
 Slow (s-) and rapid (r-) processes
* Sites with high neutron densities

e Differences to observations:
* GCE problems?

* Inaccurate observations?
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GCE models

B GCE all sites

¢ Sta n da rd Ga I aCtiC Che m ical EVO I Utio n m— cxplosions of massive stars
(G CE) mOd e |S , mmmm explosions of white dwarfs (mergers, transients+)

® 1D LTE measurements

* [X/Fe] vs [Fe/H] -> Fe is important
* Need to understand iron-peak production
 NLTE: changes GCE model understanding

* Neutron-capture elements
 Slow (s-) and rapid (r-) processes
* Sites with high neutron densities

e Differences to observations:
* GCE problems?
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Our approach: 3D RHD NLTE

e Get 3D NLTE corrections for 1D LTE
literature abundances
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Our approach: 3D RHD NLTE

e Get 3D NLTE corrections for 1D LTE
literature abundances

» Why 3D NLTE?

 Stars are 3D objects (not 1D!)

* Use 3D radiation-hydrodynamic model
atmospheres
* Validated and analysed in previous works, e.g. but

not limited to Bergemann+19 & 21, Gallagher+20,
Eitner+24, Storm+24, Guiglion+25

NASA/SDO
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Eitner et al. 2024
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Our approach: 3D RHD NLTE
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* Using developed NLTE atomic models
* Grotrian diagram
* See also Magg+22, Gerber+23
* Tested on wide range of stellar parameters

* Seee.g.

* Mn: Bergemann+19, Eitner+23, Ni: Bergemann+21,
Magg+22, Y, Eu: Storm+23,24
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Our approach: 3D RHD NLTE
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* Using developed NLTE atomic models
* Grotrian diagram
* See also Magg+22, Gerber+23
* Tested on wide range of stellar parameters
* Seee.g.

* Mn: Bergemann+19, Eitner+23, Ni: Bergemann+21,
Magg+22, Y, Eu: Storm+23,24
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3D NLTE effect on the line strength

° Example Of one n|Cke| ||ne f|t HD 84937 Ni | 5476 A Line Comparison

 HD 84937 (teff = 6350, log = 4.1,
[Fe/H] =-2.1)
e 3D NLTE line is much weaker

 Thus derived 3D NLTE abundance
higher than 1D LTE
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=== 1D LTE [Ni/Fe] = -0.01
=== 3D NLTE [Ni/Fe] = 0.49
e Observed
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3D NLTE effect on the line strength

° Example Of one n|Cke| ||ne f|t HD 84937 Ni | 5476 A Line Comparison

 HD 84937 (teff = 6350, log = 4.1,
[Fe/H] =-2.1)
e 3D NLTE line is much weaker

 Thus derived 3D NLTE abundance
higher than 1D LTE

©
Te)
e

x
=
L
ge!
D
2
©
£
—_
)
=

o o
w0 [(e]
o N

o
o)
s3]

== 1D LTE [Ni/Fe]
m=== 3D NLTE [Ni/Fe]l= 0.49
e Observed

5476.6 5476.7 5476.8 5476.9 5477.0 5477.1
Wavelength [A]

storm@ mpia.de

30

5477.2




Difference between 3D NLTE and 1D LTE abundances

4MOST HR lines: 6500 K, 4.0 dex, [Fe/H] = -3

Higher 3D NLTE abund. [ e 3D NLTE
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Effect on abundances



1D LTE literature abundances

@lD LTE

-2 0

Adapted from Storm et al. 2025
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1D LTE Now binned
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Adapted from Storm et al. 2025
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1D LTE Now binned
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Adapted from Storm et al. 2025
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3D NLTE: higher abundance

m30 MLTE

Adapted from Storm et al. 2025
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NI 3D NLTE

e OQur “baseline” GCE model
« OMEGA+ (Cote+ 17, 18)

 CCSN yields
* Limongi & Chieffi 2018

e GCE trend is flat
e 3D NLTE

* Increasing trend with lower
[Fe/H]

* GCE does not reproduce

storm@ mpia.de

m 3D NLTE
m Standard GCE model

0

—2
[Fe/H]

Adapted from Storm et al. 2025
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NI 3D NLTE

* Different explanation needed

* Need CCSN simulations in 3D at
low [Fe/H]?
* Not explored very extensively in
literature so far

» 3D effects important for iron-peak
yields in CCSN, see e.g. Wanajo+11

storm@ mpia.de

m 3D NLTE
m Standard GCE model

0

—2
[Fe/H]

Adapted from Storm et al. 2025
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Ni 3D NLTE

* Different explanation needed

e Need CCSN simulations in 3D at
low [Fe/H]?

* Not explored very extensively in
literature so far

» 3D effects important for iron-peak
yields in CCSN, see e.g. Wanajo+11

* Or another production site?
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e ECSN?
* Models predict higher Ni/Fe
yields (Nomoto+87; Wanajo+18; 30 40
Zha+22) Atomic number Wanajo+ 2018

* Need more bottom-heavy IMF in
the early Galaxy?
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Ni 3D NLTE

e See also recent JWST observations
of Crab Nebula (ECSN or low-mass
CCSN remnant?)

* [Ni/Fe] 3-5 larger than solar ones
(Temim+24)

Table 3
Derived Nickel-to-iron Ratios

Line Ratio } )

[Ni 1] /[Fe 11] 1.61 0.152 0.245 . 0.162 0.261 4.9
[Ni1 1] /[Fe 111] 1.13 0.160 0.18 3. 0.138 0.156 2.9
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Conclusions

* 3D NLTE is necessary to provide robust chemical
abundances, as the models are parameter-free

* No mixing-length, no assumption of Saha-Boltzmann equilibrium,
no Vmic

* See e.g. Bergemann+19, Lind & Amarsi+24

* Iron-peak elements

* GCE models of the disc (OMEGA+) based on state-of-the-art yields

(Limongi & Chieffi 2018) do not explain the chemical evolution of
Fe-group elements

* CCSN-dominated regime is under-produced in the GCE tracks
* ECSN have [Ni/Fe] >> 0, which could help? (Wanajo+18)

* More elements are also done: Mn, Co, Ni, Sr, Y, Ba, Eu (see
StOrm+2025) storm@ mpia.de
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e 3D NLTE
mmmm Standard GCE model ]

—2 0

Adapted from Storm et al. 2025




m 3D NLTE
0.03% MRSN
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