Direct measurement of the ¹²C(¹²C,α)²⁰Ne cross section at stellar energies

Yunzhen Li(李昀臻)

On behalf of the Carbon Fusion Experiment (CARFUSE) Collaboration

Institute of Modern Physics, Chinese Academy of Science University of Chinese Acadecay of Science

The carbon fusion reactions in the Universe

Ignition in type Ia supernovae

Uncertain cross section at stellar energies

- Large Uncertainty in experimental results within the Gamow window
- Different predictions between models and indirect methods
 - Unknow resonances: Need better
 selection T=0, J^π=0⁺,2⁺? lack of
 information of angular
 distribution

Beck, Mukhamedzhanov and Tang, Eur. Phys. J. A (2020) 56:87 Mukhamedzhanov, Eur. Phys. J. A (2022) 58:71 Tang & Ru, EPJ Web of Conferences 260, 01002 (2022)

Uncertain cross section at stellar energies

Taniguchi & Kimura, Phys. Lett. B 849 (2024)

Why we focus on the g.s. channels

How to study this reaction?

 ≻ Charged-particle measurement low statistics huge backgrounds
 ≻ γ-ray measurement sensitive probe

1634keV, 440keV cannot study the g.s. channels

> Particle- γ coincidence

suppress backgrounds cannot study the g.s. channels

The accelerator and detectors

Low Energy Accelerator Facility (LEAF)

Accelerator platform:

- up to $100 \text{ puA}(\text{Spillane: 40puA}) \text{ C}^{2+}$
- Energy spread < 0.2%
- Energy for ¹²C beam: 4 8 MeV

Energy calibration by nuclear reaction resonances:

- ${}^{27}\text{Al}(p,\gamma){}^{28}\text{Si: Er} = 405.5 \text{ keV}$
- $H(^{15}N,\alpha\gamma)^{12}C$: Er = 6398 keV

Christain Iliadis, Nuclear Pyhsics of Stars

The accelerator and detectors

Low Energy Accelerator Facility (LEAF)

Accelerator platform:

- up to <u>100 puA</u>(Spillane: 40puA) C²⁺
- Energy spread < 0.2%
- Energy for ¹²C beam: 4 8 MeV

Detection system:

- **TPC:** Ultra sensitive tracking detector
- Si: record energy information

Beam

Carbon targets

• The selection of carbon target

high-purity: very little ¹³C, Li, Be, B...
 very thick target, unsensitive to target declination
 stable, not easily destroyed by beam
 good conduction for heat

Analysis: Ecm=2.75MeV with graphite

Particle identification

✓ Particle identification via energy-loss in TPC and energy in silicons

Analysis: Ecm=2.75MeV with graphite

Particle identification via energy-loss in TPC and energy in silicons
 Tracing the origin of tracks to suppress natural backgrounds

The Q-values for this reaction were calculated from the angles and energies of ejections

Alpha peaks can be found with backgrounds

spectra w/o tracking

Analysis: Ecm=2.40MeV with HOPG

Very low energy : Long-time measurement brings **more backgrounds** but **events of interests are even fewer**

No signals in the natural alpha backgrounds

It's difficult for direct measurements at such low energies

Analysis: Ecm=2.40MeV with HOPG

Very low energy : Long-time measurement brings **more backgrounds** but **events of interests are even fewer**

The TPC+Si systerm is still effective in very-low-energy measurement!

Angular Distribution Results

The detector solid angle coverage θ : 116°-151°(c.m.) / 100°-140° (lab.) Differential thick target yield dYield/d Ω can be calculated

Similar methods are applied to obtain the angular distribution from $E_{cm} = 2.4 \text{MeV}$ to $E_{cm} = 3.5 \text{MeV}$

- First high-precision angular distribution measurement of ¹²C(¹²C, α₀)²⁰Ne channel below E_{cm} = 3.0MeV
- ➤ The J^π of resonances can be determined with the information of angular distribution

Summary

Direct measurement of ¹²C+¹²C (charged particle measurement)

- First direct measurement of a₀ channel below 2.5 MeV indicates new resonances
- Analysis of angular distribution in large energy range
- Complementary to direct measurements (eg. gamma ray, particle-gamma) of other reaction channels
- New reaction rate ~ CF88/3

Indirect+Direct measurements +theoretical extrapolation are essential

- Direct measurements will help theories(eg. AMD) and indirect measurements (THM, ²⁴Mg(a,a'))to provide a more reliable prediction
- Experiments for lower energies and more channels are needed
- Collaboration will end up with better science!

CARbon FUSion Experiment (CARFUSE) @LEAF, IMP

16

Backups

Backup

Legendre polynomials can be used to describe the variation of the differential cross section with respect to the angle.

$$\frac{d\sigma}{d\Omega}(\theta_{c.m.}) = \sum (b_l P_l(\cos\theta_{c.m.}))$$

n	$P_n(x)$
0	1
1	x
2	$\frac{1}{2}(3x^2-1)$
3	$\frac{1}{2}(5x^3 - 3x)$
4	$\frac{1}{8}(35x^4 - 30x^2 + 3)$
5	$\frac{1}{8}(63x^5 - 70x^3 + 15x)$
6	$\frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$
7	$\frac{1}{16}(429x^7 - 693x^5 + 315x^3 - 35x)$
8	$\frac{1}{128}(6435x^8 - 12012x^6 + 6930x^4 - 1260x^2 + 35)$

Detectors

- Charged particles ionize electrons from working gas(mainly He+CO₂+Ar/Kr)
- Electrons drift to the micro MEGAS and are multiplied, the position and signal amplitude are recorded

Data analysis

Event selection

- By track tracing, we know where this track comes from
- Cosmos rays and natural background are thrown

Low Energy Accelerator Facility (LEAF)

termina

- Beam intensity up to **<u>100 puA</u>** on target(Spillane: 40puA) •
- Energy spread < 0.2% ٠

ion source

Energy for ¹²C beam: 4 - 8 MeV

Analysis: Ecm=2.40MeV with HOPG

Preliminary results Thick-target yield

Angular distribution

Thick target can be seen as an accumulation of an infinite number of very thin targets

So

yield of thin layer of target with thickness of D:

 $Y = N_{\rm V}\sigma D = N_{\rm s}\sigma$

(Nv: nucleus number density)

total yield for target of thickness D:

$$Y = N_{\rm V} \int_0^D \sigma(E) dx = N_{\rm V} \int_0^{R(E_0)} \sigma(E) dx$$
$$= N_{\rm V} \int_{E_0}^0 \sigma(E) \frac{dE}{(dE/dx)}$$

 $Y(E_0) = N_V \int_0^{E_0} \left[\sigma(E) \left(- \left(\frac{dE}{dx} \right) \right] dE$

Stopping power

For this experiment, we used infinite thick target with so high beam intensity

Preliminary results

Thick-target yield

Angular distribution

Cross section of reactions can be obtained by differentiating the yield of thick target

When $\Delta E \rightarrow 0$ ($\Delta x \rightarrow 0$), $E_{eff} \rightarrow E_0$, So:

$$\sigma(\mathbf{E}) = \left(-\frac{1}{N_v}\frac{dE}{dx}\right)\frac{\partial \text{Yield}}{\partial \mathbf{E}}$$

This is how we calculated the cross section from the fit-curve of thick target yield