

Determining neutron-induced reaction cross sections with surrogate reactions in inverse kinematics at heavy-ion storage rings

C. Berthelot¹, B. Jurado¹, M. Sguazzin⁵, B. Wloch¹, J. Pibernat¹, J. A. Swartz¹³, M. Grieser², J. Glorius³, Y. A. Litvinov³, R. Reifarth⁴, K. Blaum², P. Alfaurt¹, P. Ascher¹, L. Audouin⁵, B. Blank¹, B. Bruckner⁴, S. Dellmann⁴, I. Dillmann⁶, C. Domingo-Pardo⁷, M. Dupuis⁸, P. Erbacher⁴, M. Flayol¹, O. Forstner³, D. Freire-Fernandez², M. Gerbaux¹, J. Giovinazzo¹, S. Grevy¹, C. Griffin⁶, A. Gumberidze³, S. Heil⁴, A. Heinz⁹, D. Kurtulgil⁴, G. Leckenby⁶, S. Litvinov³, B. Lorentz³, V. Meot⁸, J. Michaud¹, S. Perard¹, U. Popp³, M. Roche¹, M.S. Sanjari³, R.S. Sidhu¹⁰, U. Spillmann³, M. Steck³, Th. Stöhlker³, B. Thomas¹, L. Thulliez⁸, M. Versteegen¹, L. Begue-Guillou¹¹, D. Ramos¹¹, A. Cobo¹¹, A. Francheteau¹¹, M. Fukutome¹², A. Henriques¹³, I. Jangid¹¹, A. Kalinin³, W. Korten⁸, T. Yamaguchi¹²

¹- LP2I (ex-CENBG), Bordeaux, France
 ³-GSI, Darmstadt, Germany
 ⁵-IJCLAB, Orsay, France
 ⁷-IFIC, Valencia, Spain
 ⁹-University of Chalmers, Sweden
 ¹¹-GANIL, France
 ¹³-FRIB, USA

²- MPIK, Heidelberg, Germany
⁴-University of Frankfurt, Germany
⁶-Triumf, Vancouver, Canada
⁸-CEA, France
¹⁰-University of Edinburgh, UK
¹²-University of Osaka, Japan

The surrogate reaction method

determination of $P_{\gamma}(E^*)$, $P_n(E^*)$ and $P_f(E^*)$.

→ E^{*} energy resolution needed ~ a few 100 keV $E^* = f(E_{\text{beam}}, E_{\text{ejectile}}, \theta_{\text{ejectile}})$

→ Difficult to achieve in inverse kinematics

Heavy-ion storage rings

Gas jet target:

___ windowless, pure and thin target

High quality beam:

 electron cooling technology: beam energy spread and size are restored after each passing in the target.

→ neglect energy loss and straggling effect in the target $E^* = f(E_{\text{beam}}, E_{\text{ejectile}}, \theta_{\text{ejectile}})$

> ultra-low density target (10¹¹ to 10¹⁴ atoms/cm²) +

revolving frequency of the beam (10⁶ Hz)

 \rightarrow high enough effective thickness

NECTAR experiments at the ESR

Simultaneous measurement of **neutron**, **gamma-ray**, **fission**, **two-neutron** and even **three-neutron** emission probabilities as a function of the excitation energies E^{*} of ²³⁸U and ²³⁹U.

NECTAR experiments at the ESR

$$238U(d,p) \xrightarrow{236U} \xrightarrow{3n \gamma} f \xrightarrow{3n \chi} x^{239}U$$

$$238U + d \rightarrow p + 239U^{*} \xrightarrow{2n} n \xrightarrow{238U} x^{239}U^{*}$$

Determining probabilities

For a given decay mode χ :

$$P_{\chi}(E^{*}) = \frac{N_{c,\chi}(E^{*})}{N_{S}(E^{*}) \cdot \varepsilon_{\chi}(E^{*})}$$

$$P_{X}(E^{*}) = \frac{N_{X}(E^{*})}{N_{S}(E^{*}) \cdot \varepsilon_{X}(E^{*})}$$

Target-like residue identification plot

$$P_f(E^*) = \frac{N_{\gamma, n, 2n, 3n}(E^{-})}{N_S(E^*) \cdot \varepsilon_{\gamma, n, 2n, 3n}(E^{-})}$$

 $E^*_{max} = 26 \text{ MeV}$

Preliminary probabilities

First measurement of P_{2n} *and* P_{3n} *First simultaneous measurement of all decay channels up to* $E^* = 25 \text{ MeV}$

- ♦ Surrogate reaction method → obtain σ_n indirectly with experimentally feasible reactions
- Heavy-ion storage rings provide outstanding efficiencies and high precision data

Short and long-term perspectives:

Cross section calculations

Next experiment scheduled in 2027 to study ²⁰⁵Pb and ²⁰⁶Pb at the ESR with a dedicated reaction chamber

Acknowledgements

This work is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-Advanced grant NECTAR, grant agreement No 884715). NECTAR: Nuclear rEaCTions At storage Rings.

Prime 80 program from CNRS, PhD thesis of M. Sguazzin.

Accord de collaboration 19-80 GSI/IN2P3.

The results presented here are based on the experiment G-22-00028-1.1-E, which was performed at the GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany) in the context of FAIR Phase-0.

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.