Direct measurement of neutron capture on radioactive isotopes at CERN n_TOF

César Domingo Pardo

0005

Why (n,γ) with unstable isotopes? and why direct measurements?

S-process branchings: Stellar models & conditions

Tagliente et al. Phys. Rev. C 87 (2013)

Why (n,γ) with unstable isotopes? and why direct measurements?

S-process branchings: Stellar models & conditions

S-process branchings in the TOF lab: the roadmap

The s process:

EAR1@186 m

REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY-MARCH 2011	Sample	Half-life (yr)	Q value (MeV)	Comment
s process; Nuclear physics, stellar models, and observations	⁶³ Ni	100.1	$\beta^{-}, 0.066$	TOF work in progress (Couture, 2009), sample with low enrichment
	⁷⁹ Se	$2.95 imes 10^{5}$	$\beta^{-}, 0.159$	Important branching, constrains s-process temperature in massive stars
F. Käppeler*	⁸¹ Kr	2.29×10^{5}	EC, 0.322	Part of ⁷⁹ Se branching
Karleruha lastituta of Tashaahary, Campus Nord, Jastitut für Kamphysik, 76001 Kadapuha	⁸⁵ Kr	10.73	$\beta^{-}, 0.687$	Important branching, constrains neutron density in massive stars
Gernany	⁹⁵ Zr	64.02 d	β^{-} , 1.125	Not feasible in near future, but important for neutron density low-mass AGB stars
B Gallino [†]	¹³⁴ Cs	2.0652	$\beta^{-}, 2.059$	Important branching at $A = 134, 135$, sensitive to s-process temperature in
Dipartimente di Einice Canarale, Università di Tarine I 101	105	,		low-mass AGB stars, measurement not feasible in near future
Dipartimento di Fisica Generale, Universita di Torino 1-101	¹³⁵ Cs	$2.3 imes 10^{6}$	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)
C. Distanzat	¹⁴⁷ Nd	10.981 d	$\beta^{-}, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars
S. Bisterzo*	¹⁴⁷ Pm	2.6234	$\beta^{-}, 0.225$	Part of branching at $A = 147/148$
Dipartimento di Fisica Generale, Università di Torino, I-101	¹⁴⁸ Pm	5.368 d	β^{-} , 2.464	Not feasible in the near future
	¹⁵¹ Sm	90	$\beta^{-}, 0.076$	Existing TOF measurements, full set of MACS data available (Abbondanno
Wako Aoki [®]				et al., 2004a; Wisshak et al., 2006c)
National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan	¹⁵⁴ Eu	8.593	β^- , 1.978	Complex branching at $A = 154, 155$, sensitive to temperature and neutron density
	¹⁵⁵ Eu	4.753	$\beta^{-}, 0.246$	So far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1995)
Talk: Adria Casanovas (Monday)	¹⁵³ Gd	0.658	EC, 0.244	Part of branching at $A = 154, 155$
Taik. Auta Casariovas (Worlday)	¹⁶⁰ Tb	0.198	β^{-} , 1.833	Weak temperature-sensitive branching, very challenging experiment
Poster#64 Emmanuel Seyi Odusina	¹⁶³ Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)
Poster#99 Selin Berencioalu	¹⁷⁰ Tm	0.352	$\beta^{-}, 0.968$	Important branching, constrains neutron density in low-mass AGB stars
r osternos centr berenologia	¹⁷¹ Tm	1.921	$\beta^{-}, 0.098$	Part of branching at $A = 170, 171$
	¹⁷⁹ Ta	1.82	EC, 0.115	Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope
	^{185}W	0.206	$\beta^{-}, 0.432$	Important branching, sensitive to neutron density and s-process temperature in low-mass AGB stars
	²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System
	R2@2	0 m		

S-process branchings in the TOF lab: the efforts

Sample	Half-life (yr)	Q value (MeV)	Comment	
⁶³ Ni	100.1	β^{-} 0.066	TOF work in progress (Couture, 2009), sample with low enrichment	
⁷⁹ Se	$2.95 imes 10^{5}$	$\beta^{-}, 0.159$	Important branching, constrains s-process temperature in massive stars	
⁸¹ Kr	2.29×10^{5}	EC, 0.322	Part of ⁷⁹ Se branching	
⁸⁵ Kr	10.73	$\beta^{-}, 0.687$	Important branching, constrains neutron density in massive stars	
⁹⁵ Zr	64.02 d	β^{-} , 1.125	Not feasible in near future, but important for neutron density low-mass AGB stars	
¹³⁴ Cs	2.0652	β^{-} , 2.059	Important branching at $A = 134, 135$, sensitive to <i>s</i> -process temperature in low-mass AGB stars, measurement not feasible in near future	
¹³⁵ Cs	$2.3 imes 10^{6}$	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)	
¹⁴⁷ Nd	10.981 d	$\beta^{-}, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars	
¹⁴⁷ Pm	2.6234	$\beta^{-}, 0.225$	Part of branching at $A = 147/148$	
¹⁴⁸ Pm	5.368 d	$\beta^{-}, 2.464$	Not feasible in the near future	
¹⁵¹ Sm	90	$\beta^{-}, 0.076$	Existing TOF measurements, full set of MACS data available (Abbondanno	
			et al., 2004a; Wisshak et al., 2006c)	
¹⁵⁴ Eu	8.593	$\beta^{-}, 1.978$	Complex branching at $A = 154, 155$, sensitive to temperature and neutron density	
¹⁵⁵ Eu	4.753	$\beta^{-}, 0.246$	So far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1995)	
¹⁵³ Gd	0.658	EC, 0.244	Part of branching at $A = 154, 155$	
¹⁶⁰ Tb	0.198	$\beta^{-}, 1.833$	Weak temperature-sensitive branching, very challenging experiment	
¹⁶³ Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)	
¹⁷⁰ Tm	0.352	$\beta^{-}, 0.968$	Important branching, constrains neutron density in low-mass AGB stars	
¹⁷¹ Tm	1.921	$\beta^{-}, 0.098$	Part of branching at $A = 170, 171$	
¹⁷⁹ Ta	1.82	EC, 0.115	Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope	
¹⁸⁵ W	0.206	$\beta^{-}, 0.432$	Important branching, sensitive to neutron density and <i>s</i> -process temperature in low-mass AGB stars	
²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System	

S-process branchings in the TOF lab: the efforts

S-process branchings in the TOF lab: the efforts

The ⁷⁹Se(n, γ) stellar thermometer

PAUL SCHERRER INSTIT

s-process temperature via the ⁷⁹Se branching

Neutron eneray (eV)

Lerendegui-Marco, et al., EPJ Web Conf. 279 (2023)

- Why unstable isotopes? and why <u>direct</u> (n,γ) measurements?
- Recent (n,γ) measurements with unstable isotopes at CERN n_TOF
- Plans for future direct (n,γ) measurements on s- and i-process isotopes
- Long-term perspectives for direct (n, γ) measurements on short-lived nuclei
- Summary & Outlook

Activation at NEAR: several MACS possible!

n_TOF NEAR: (n,g) activations with very high flux (x~100 EAR2): small masses, unstable isotopes

Activation at NEAR: synergy with ISOLDE for radio-isotopically pure samples!

- Why unstable isotopes? and why <u>direct</u> (n,γ) measurements?
- Recent (n,γ) measurements with unstable isotopes at CERN n_TOF
- Plans for future direct (n,γ) measurements on s- and i-process isotopes
- Long-term perspectives for direct (n,γ) measurements on short-lived nuclei
- Summary & Outlook

Long-term future: brighter neutron flux facilities at CERN

Changing the game. Direct (n,γ) reactions in inverse kinematics

Summary & outlook

Thanks to all collaborators and funding

O Aberle¹ V. Alcayne² Americai³⁴ J. Andrzejewski⁵ L. Audouin⁶ V. Babiano-Suarez⁷ M. Bacak^{1,8,9} M. Barbagallo^{1,10} S. Bennett¹¹ E. Berthoumieux9 J Billowes¹¹ D. Bosnar¹² A. Brown¹³ M. Busso^{10,14,15} M. Caamaño¹⁶ L. Caballero-Ontanava⁷ F. Calviño17 M. Calviani¹ D. Cano-Ott² A. Casanovas¹⁷ F. Cerutti¹ E. Chiaveri^{1,11} N. Colonna¹⁰ G. Cortés¹⁷ M. A. Cortés-Giraldo18 L Cosentino³ S. Cristallo^{14,19} L. A. Damone^{10,20} P. J. Davies¹¹ M. Diakaki^{21,1} M. Dietz²⁴ A. Ventura³⁴ D. Vescovi^{10,14} V. Vlachoudis¹ R. Vlastou²¹

A. Wallner⁴⁷ P. J. Woods²² T. Wright¹¹

P. Žugec¹²

C. Domingo-Pardo7 R. Dressler²³ Q. Ducasse²⁴ E. Dupont⁹ I. Durán¹⁶ Z. Eleme²⁵ B. Fernández-Domínguez¹⁶ A. Ferrari¹ P. Finocchiaro³ V. Furman²⁶ K. Göbel²⁷ R. Garg²² A. Gawlik⁵ S. Gilardoni¹ I. F. Gonçalves²⁸ E. González-Romero² C. Guerrero¹⁸ F. Gunsing⁹ H. Harada²⁹ S. Heinitz²³ J. Hevse³⁰ D. G. Jenkins¹³ A. Junghans³¹ F. Käppeler³² Y. Kadi¹ A. Kimura²⁹ I. Knapová³³ M. Kokkoris²¹ Y. Kopatch²⁶ M. Krtička³³ D. Kurtulgil²⁷

The n_TOF

Collaboration

 Ladarescu⁷ C. Lederer-Woods²² H. Leeb⁸ J. Lerendequi-Marco¹⁸ S. J. Lonsdale²² D. Macina¹ A. Manna^{34,35} T. Martínez² A Masi¹ C. Massimi^{34,35} P. Mastinu³⁶ M. Mastromarco¹ E. A. Maugeri²³ A. Mazzone^{10,37} E. Mendoza² A. Mengoni³⁸ V. Michalopoulou^{21,1} P. M. Milazzo³⁹ F. Minarone¹ J. Moreno-Soto⁹ A. Musumarra^{3,40} A. Negret⁴¹ R. Nolte²⁴ F. Ogállar42 A. Oprea⁴¹ N. Patronis²⁵ A. Pavlik⁴³ J. Perkowski⁵ L. Persanti^{10,14,19} C. Petrone⁴¹ E. Pirovano²⁴

J. Praena⁴² J. M. Quesada¹⁸ D. Ramos-Doval⁶ T. Rauscher^{44,45} R. Reifarth²⁷ D. Rochman²³ Y. Romanets²⁸ C Rubbia¹ M. Sabaté-Gilarte^{18,1} A. Saxena⁴⁶ P. Schillebeeckx³⁰ D. Schumann²³ A. Sekhar¹¹ A G Smith¹¹ N. V. Sosnin¹¹ P. Sprung²³ A. Stamatopoulos²¹ G. Tagliente¹⁰ J. L. Tain⁷ A. Tarifeño-Saldivia¹⁷ L. Tassan-Got^{1,21,6} Th. Thomas²⁷ P. Torres-Sánchez⁴² A. Tsinganis¹ J. Ulrich²³ S. Urlass^{31,1} S. Valenta³³ G. Vannini34,35 V. Variale¹⁰

P. Vaz²⁸

I. Porras⁴²

Thanks for your attention!

