Tracing the MW spiral arms with ²⁶Al: the role of novae in the 2D distribution of ²⁶Al

Arianna Vasini - University of Insubria, Como In collaboration with Prof. F. Matteucci & E. Spitoni - University of Trieste arianna.vasini@inaf.it NIC 2025

UNIVERSITÀ DEGLI STUDI **DELL'INSUBRIA**

Outline

Introduction: ²⁶Al in astrophysics

- What do we want to do?
- Why?

2D Chemical Evolution Model: Spitoni+19, 23, Vasini+22,+24

- Parameters and assumptions
- 2D results: SFR, novae and ²⁶Al

Conclusions

Chemical evolution of SLR isotopes: ²⁶Al Nuclear and astrophysical properties

- Novae are WD that accrete matter from a companion
- •An explosion is triggered but the nova doesn't die
- The matter accretion continues until a new explosion
- •Novae can experience up to 10⁴ explosions during their lifetime

²⁶Al main production sites: Massive stars Nova systems(?)

Chemical evolution of SLR isotopes: ²⁶Al Nuclear and astrophysical properties

²⁶Al main production sites: Massive stars Nova systems(?)

tracers of active star formation regions

fetime

26Al & 60Fe observations COMPTEL, INTEGRAL and COSI

COMPton **TEL**escope

(COMPTEL, Schönefelder+84):

-1.5 - 2 M_{\odot} of ²⁶Al within 5 kpc from the Galactic centre

26Al & 60Fe observations COMPTEL, INTEGRAL and COSI

COMPton **TEL**escope

(COMPTEL, Schönefelder+84):

-1.5 - 2 M_{\odot} of ²⁶Al within 5 kpc from the Galactic centre

INTEGRAL, Winkler94):

- -1.7 2 M_{\odot} of $^{26}{\rm AI}$ within 5 kpc from the Galactic centre
- -1-6 M_{\odot} of $^{60}{\rm Fe}$ within 5 kpc from the Galactic centre

26Al & 60Fe observations COMPTEL, INTEGRAL and COSI

COMPton **TEL**escope

(COMPTEL, Schönefelder+84):

-1.5 - 2 M_{\odot} of ²⁶Al within 5 kpc from the Galactic centre

INTEGRAL, Winkler94):

- -1.7 2 M_{\odot} of $^{\rm 26}{\rm AI}$ within 5 kpc from the Galactic centre
- -1-6 M_{\odot} of $^{60}{\rm Fe}$ within 5 kpc from the Galactic centre

COmpton **S**pectrometer and **I**mager

(COSI, Tomsick+ 2019):

- will detect the ²⁶Al in each ring around the Galactic center;
- will be able to observe outside of the Milky Way (observations of the LMC)

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 517, 4256–4264 (2022) Advance Access publication 2022 October 21

Chemical evolution of ²⁶Al and ⁶⁰Fe in the Milky Way

A. Vasini,^{1,2} F. Matteucci^{1,2,3} and E. Spitoni^{4,5,6}

¹Dipartimento di Fisica, Sezione di Astronomia, Università di Trieste, via G.B. Tiepolo 11, I-34131 Trieste, Italy ²INAF Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34131 Trieste, Italy ³INFN Sezione di Trieste, via Valerio 2, I-34134 Trieste, Italy ⁴Universitè Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Bd de l'Observatoire, CS 34229, F-06304 Nice Cedex 4, France ⁵Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest, Hungary ⁶Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

Accepted 2022 May 19. Received 2022 May 19; in original form 2022 April 1

https://doi.org/10.1093/mnras/stac2981

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Vasini+22: Chemical Evolution model with 1D approximation

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Vasini+22: Chemical Evolution model with 1D approximation

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Introduction

We want to study in a more detailed way the distribution of ²⁶Al in the Milky Way

Vasini+22: Chemical Evolution model with 1D approximation

homogeneous mixing does not hold for Short Lived Radioisotopes: 2D model needed

Aim: why?

Spitoni+2019,+2023: <u>2D model can trace the alpha-element abundance oscillations in an annulus</u>

Arianna Vasini 19 June 2025

4/9

Aim: why?

Spitoni+2019,+2023: <u>2D model can trace the alpha-element abundance oscillations in an annulus</u>

→

Arianna Vasini 19 June 2025

How much the results of Vasini+2022 about ²⁶Al are affected by the choice of 1D over 2D model?

Aim: why?

Spitoni+2019,+2023: <u>2D model can trace the alpha-element abundance oscillations in an annulus</u>

How much the results of Vasini+2022 about ²⁶Al are affected by the choice of 1D over 2D model? ->

Massive stars are not the only astronomical production site of ²⁶Al

Nova systems contribute too: -delay for the formation of the white dwarf -delay for the cooling time

Nova systems do not trace the SFR

Aim: why?

Spitoni+2019,+2023: <u>2D model can trace the alpha-element abundance oscillations in an annulus</u>

How much the results of Vasini+2022 about ²⁶Al are affected by the choice of 1D over 2D model? -

Massive stars are not the only astronomical production site of ²⁶Al

Nova systems contribute too: -delay for the formation of the white dwarf -delay for the cooling time

How much the nova contribution affect the precision of the ²⁶AI SFR tracing?

2D CE model

Chemical evolution of ²⁶Al: 2D MW Vasini, Spitoni, Matteucci, Cescutti & Della Valle 2024

SFR from 2D model by *Spitoni+19,+23*:

Arianna Vasini 19 June 2025

CNIC XVIID

Arianna Vasini 19 June 2025

-2.8 ∰ -3.2 -3.6 -4.00

Chemical evolution of ²⁶Al: 2D MW Vasini, Spitoni, Matteucci, Cescutti & Della Valle 2024

²⁶Al producers: massive stars + nove

 $1.028 M_{\odot}$

²⁶Al producers: massive stars

 $0.265 M_{\odot}$

vs 2 M_{\odot} observed

theoretical ²⁶Al is too low

Chemical evolution of ²⁶Al: 2D MW Vasini, Spitoni, Matteucci, Cescutti & Della Valle 2024

²⁶Al producers: massive stars + nove

 $1.028 M_{\odot}$

²⁶Al producers: massive stars

 $0.265 M_{\odot}$

vs 2 M_{\odot} observed

theoretical ²⁶Al is too low

Arianna Vasini 19 June 2025

disc novae bulge novae (regular novae) (Enhanced nucleosynthesis x10 disc novae)

Conclusions

Milky Way 1D (Vasini+22):

Milky Way 2D (Vasini+24):

- 1D models have limitations \longrightarrow we developed a 2D model

• Only by including production from novae we can reproduce the observations ——• novae are ²⁶Al sources

• novae smooth out the spiral arm pattern — P²⁶Al is not a pure SFR tracers, ⁶⁰Fe traces it better

• we cannot reproduce the observations — increased production by bulge novae (already observed)

