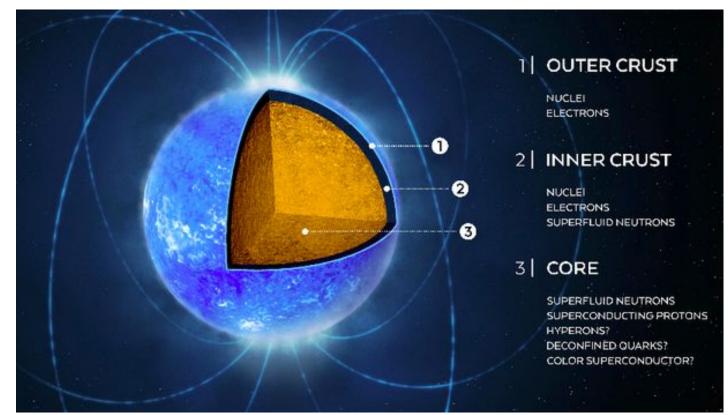


New Constraints on the Neutron Star Equation of State

Melissa Mendes


In collaboration with Sebastien Guillot, Anna Hensel, Lucien Mauviard, Achim Schwenk, Isak Svensson, Anna Watts (and many more people!)

Neutron stars (NS)

The natural laboratory for the investigation of nuclear matter

Figure from Watts et al, Rev. Mod. Phys (2016), arxiv:1602.01081

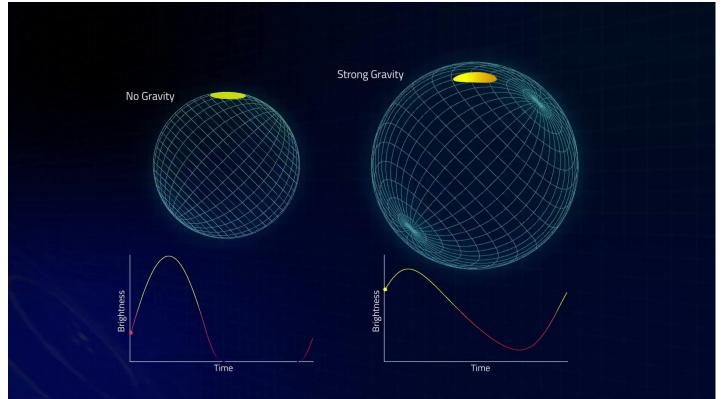
Multimessenger astrophysics

Recent (and future) observations provide unprecedentedly precise NS data

Modified figure from https://www.ligo.org/science/ Publication-GWHEN-IceCube /index.php

Constraining equation of state and NS M-R curves

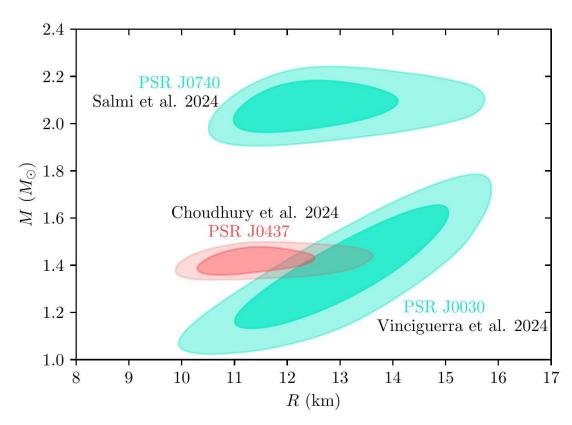
Equation of state Mass-radius 3.0 Nucleonic (a) (b) CEFT Hyperon log₁₀Pressure (dyne/cm²) 2.5 Ouark ···· Hybrid DOCD (⁰ ^{2.0} ^{(⊙} ^() ^{1.5} ^{1.5} ^{1.0} 1.0 34 0.5 33 0.0L 14.2 14.8 15.0 15.2 10 11 12 13 14 15 14.4 14.6 g 16 Radius (km) log₁₀ Density (g/cm³)


See Anthea Fantina's talk today

Astrophysical observations can constrain the nuclear matter EOS

Figure from Watts et al, Science China Physics, Mechanics & Astronomy (2019), arxiv:1812.04021

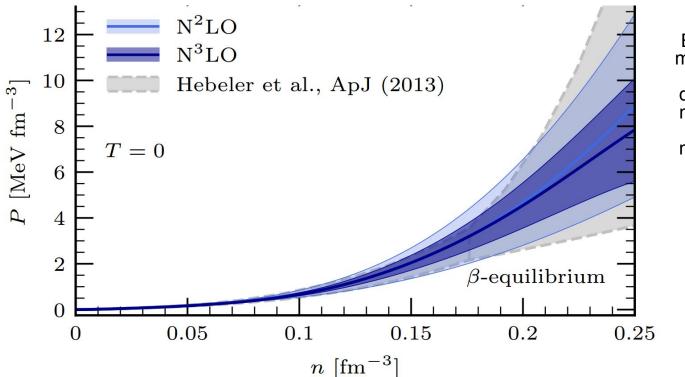
Pulse profile modeling


Proportional effect to the stars' compactness (M/R)

Simultaneous constraint on neutron star mass and radius

Animation from https://svs.gsfc.nasa.gov/vis/ a020000/a020200/a020268/ Lensing.1080.mp4

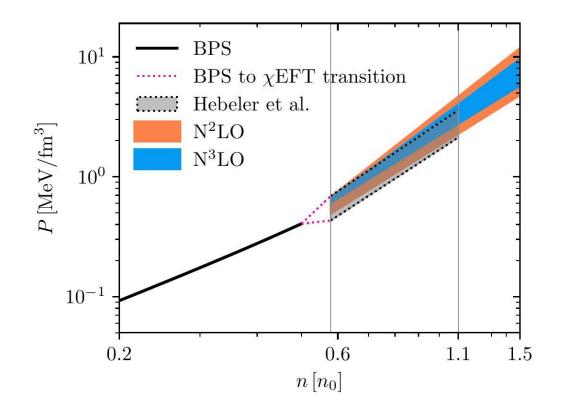
Recent data from NICER and GW


Already including mass constraints from radio observations and background constraints (when available)

Plus tidal deformabilities from GW170817 and GW190425

Modified figure from Rutherford, MM, Svensson et al, ApJL (2024), arxiv:2407.06790

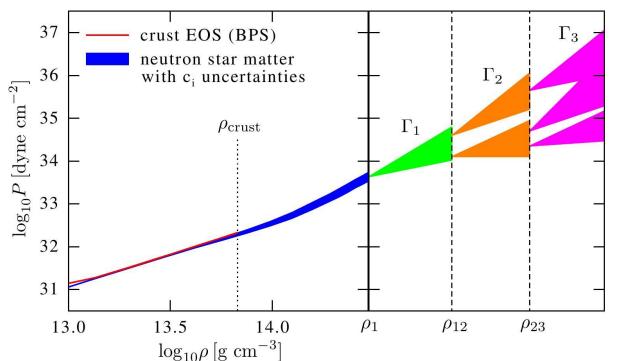
Chiral effective field theory



Based on asymmetric matter calculations and improved uncertainty quantification, for both next-to-next-to (N²LO) and next-to-next-to-next-to (N³LO) leading order

Figure from Keller et al, PRL (2023), arxiv:2204.14016

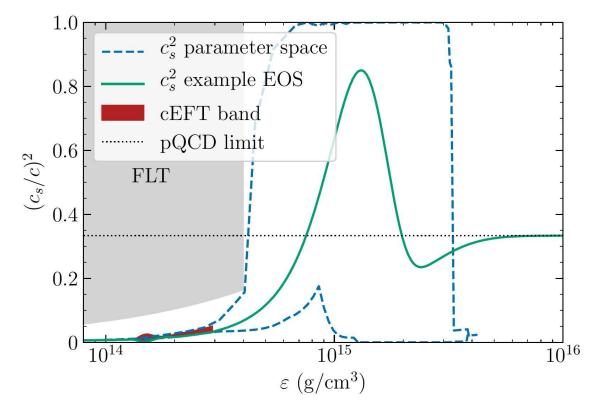
Crust and outer core


BPS EOS to model crust and polytropic fit (P = K n^{Γ}) for chiral EFT

Extended to both $1.1n_{sat}$ and 1.5 n_{sat}

From Rutherford, MM, Svensson et al, ApJL (2024), arxiv:2407.06790

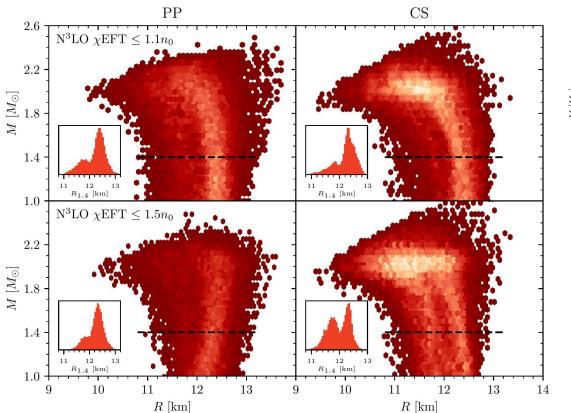
Piecewise polytropic parametrization (PP)



3 independent polytropes, respecting causality

Figure from Hebeler et al, ApJ (2013) arxiv:1303.4662

Speed of sound parametrization (CS)



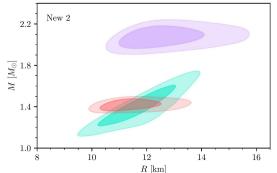
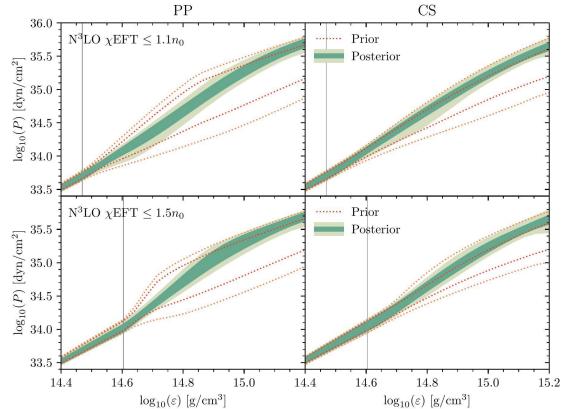

Analytical expression to speed of sound, limited by Fermi liquid theory causality $\lim_{n\geq 50 \text{ nsat}} c_s^2 \rightarrow 1/3$

Figure from Greif et al, MNRAS (2019) arxiv: 1812.08188

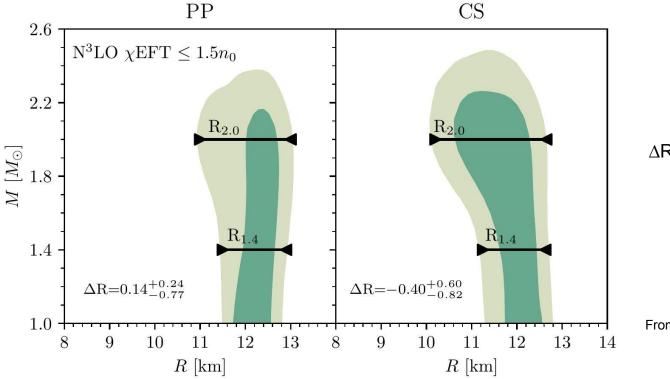
Most likely M-R


Consistent results for PP and CS parameterizations

Bimodal-like tendency for all posteriors

From Rutherford, MM, Svensson et al, ApJL (2024), arxiv:2407.06790

Corresponding P-E curves



Stiffening of EOS P-E curves at intermediate densities

From Rutherford, MM, Svensson et al, ApJL (2024) arxiv:2407.06790

Trends for dense matter EOS

TECHNISCHE UNIVERSITÄT DARMSTADT

We calculate

$$\Delta R = R_{2.0} - R_{1.4}$$

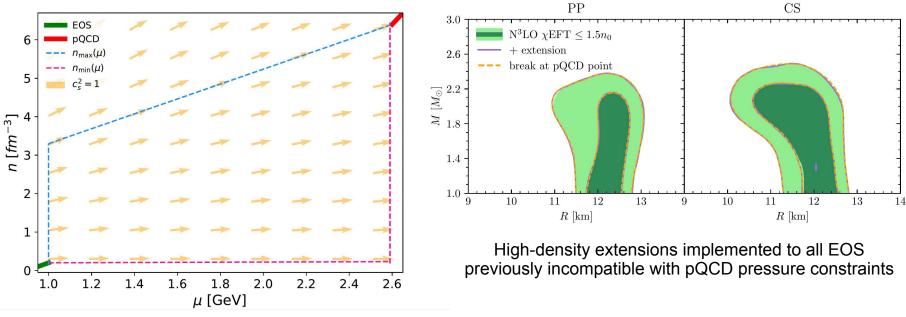
 ΔR > 0 suggests a stiffening of the EOS

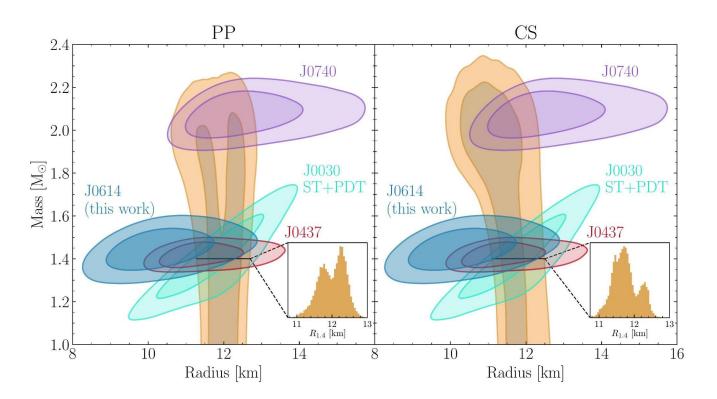
Small dependence on high-density extension

From Rutherford, MM, Svensson et al, ApJL (2024), arxiv:2407.06790

Perturbative QCD (pQCD)

From A. Hensel thesis defended yesterday!




Figure modified from Komoltsev and Kurkela, PRL (2022), arxiv:2111.05350

Minor effects in the posteriors, already well constrained by PSR J0740

NIC XVIII | M Mendes

PSR J0614 M-R from NICER

Bimodal-like structure present for both high-density extensions

Slight EOS softening compared to previous posteriors

Figure from Mauviard, Guillot et al, ApJ submitted (2025) arxiv: 2506.14883

PSR J0614 M-R from NICER

-		
	PP	\mathbf{CS}
$R_{1.4}$ [km]	$12.05\substack{+0.56\\-0.79}$	$11.71_{-0.63}^{+0.71}$
$R_{2.0} \mathrm{[km]}$	$11.99_{-1.25}^{+0.85}$	$11.20^{+1.05}_{-0.94}$
$\Delta R \; [m km]$	$-0.10\substack{+0.41\\-0.75}$	$-0.56\substack{+0.60\\-0.73}$
$M_{\rm TOV}$ $[M_{\odot}]$	$2.13_{-0.18}^{+0.13}$	$2.05_{-0.16}^{+0.24}$
$R_{\rm TOV}$ [km]	$11.72^{+1.13}_{-1.33}$	$10.65^{+1.30}_{-0.87}$
$\log_{10} \varepsilon_{c, \text{TOV}} [\text{g/cm}^3]$	$15.11_{-0.20}^{+0.27}$	$15.43_{-0.14}^{+0.05}$
$n_{c,\mathrm{TOV}}/n_0$	$4.11^{+2.53}_{-1.31}$	$7.17^{+1.24}_{-1.42}$
$\log_{10} P_{c,\mathrm{TOV}} [\mathrm{dyn/cm}^2]$	$35.61^{+0.35}_{-0.32}$	$35.94_{-0.39}^{+0.23}$
$\log_{10} P(2n_0) [\mathrm{dyn/cm}^2]$	$34.43_{-0.14}^{+0.12}$	$34.38_{-0.09}^{+0.12}$
$\log_{10} P(3n_0) [\mathrm{dyn/cm^2}]$	$35.01^{+0.20}_{-0.18}$	$34.92_{-0.13}^{+0.16}$
$\log_{10} P(4n_0) [{\rm dyn/cm^2}]$	$35.33_{-0.14}^{+0.14}$	$35.27_{-0.11}^{+0.14}$
	$\begin{array}{c c} R_{2.0} \ [\rm{km}] \\ \hline \Delta R \ [\rm{km}] \\ \hline M_{\rm TOV} \ [M_{\odot}] \\ \hline R_{\rm TOV} \ [\rm{km}] \\ \hline log_{10} \varepsilon_{c,{\rm TOV}} \ [\rm{g/cm}^3] \\ n_{c,{\rm TOV}}/n_0 \\ \hline log_{10} P_{c,{\rm TOV}} \ [\rm{dyn/cm}^2] \\ \hline log_{10} P(2n_0) \ [\rm{dyn/cm}^2] \\ \hline log_{10} P(3n_0) \ [\rm{dyn/cm}^2] \\ \end{array}$	$\begin{array}{c ccccc} R_{2.0} \ [\mathrm{km}] & 11.99^{+0.85}_{-1.25} \\ \hline \Delta R \ [\mathrm{km}] & -0.10^{+0.41}_{-0.75} \\ \hline M_{\mathrm{TOV}} \ [M_{\odot}] & 2.13^{+0.13}_{-0.18} \\ \hline R_{\mathrm{TOV}} \ [\mathrm{km}] & 11.72^{+1.13}_{-1.33} \\ \hline \log_{10} \varepsilon_{c,\mathrm{TOV}} \ [\mathrm{g/cm}^3] & 15.11^{+0.27}_{-0.20} \\ n_{c,\mathrm{TOV}}/n_0 & 4.11^{+2.53}_{-2.13} \\ \hline \log_{10} P_{c,\mathrm{TOV}} \ [\mathrm{dyn/cm}^2] & 35.61^{+0.35}_{-0.32} \\ \hline \log_{10} P(2n_0) \ [\mathrm{dyn/cm}^2] & 34.43^{+0.12}_{-0.14} \\ \hline \log_{10} P(3n_0) \ [\mathrm{dyn/cm}^2] & 35.01^{+0.20}_{-0.18} \\ \end{array}$

Bimodal-like structure present for both high-density extensions

Slight EOS softening compared to previous posteriors

Figure from Mauviard, Guillot et al, ApJ submitted (2025) arxiv:2506.14883

Summary

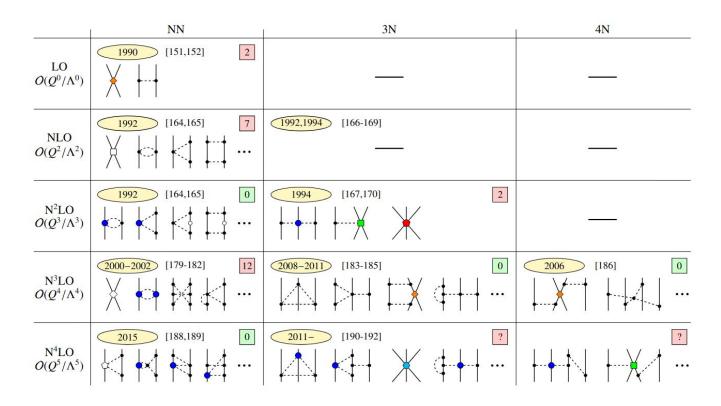
□ NICER data significantly constraints the posteriors, especially PSR J0740

Posteriors overall consistent for N²LO, N³LO, PP, CS, up to 1.1 n₀ or 1.5 n₀ N³LO and 1.5 n₀ more constrained

Bimodal-like structure under further investigation, within the posteriors, no clear preference between softer or stiffer EOS

Precision of observations only increases! More data expected soon

Gracias!


melissa.mendes@tu-darmstadt.de

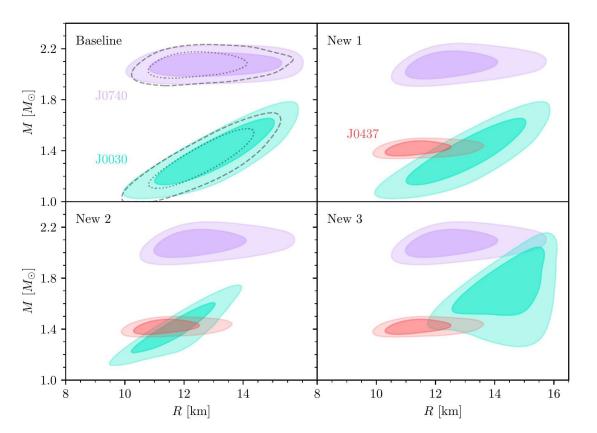
Additional slides

Chiral effective field theory

Ab-initio calculations can determine the EOS at low densities

Figure from Hebeler, Phys.Rept. (2021), arxiv:2002.09548

Non-trivial hot-spot modeling



		ST	СЅТ	CDT	EST	EDT	PST	PDT
		Single Temperature	Concentric Single Temperature	Concentric Double Temperature	Eccentric Single Temperature	Eccentric Double Temperature	Protruding Single Temperature	Protruding double Temperature
-S	Antipodal Symmetry							
-U	Unshared parameters							
ŝ	эт	ST-U/ST-S						

Figure from Vinciguerra et al, APJ (2023), arxiv:2308.08409

Recent data from NICER

Some possible MR data contours for some neutron stars

From Rutherford, MM, Svensson et al, ApJL (2024), arxiv:2407.06790

Bayesian framework

Following previous works, (Raaijmakers et al, 2020; 2019), posterior distributions of all EOS parameters (θ) and central energy density (ϵ):

$$p(\theta, \varepsilon \mid d, \mathbb{M}) \propto p(\theta \mid \mathbb{M}) \ p(\varepsilon \mid \theta, \mathbb{M}) imes \prod_{i} p(\Lambda_{1,i}, \Lambda_{2,i}, q_i \mid \mathcal{M}_c, d_{\mathrm{GW},i}) imes$$

 $imes \prod_{l} p_{\mathrm{new}}(\mathcal{M}_l, \mathcal{R}_l \mid d_{\mathrm{NICER}(+\mathrm{radio}),l}),$

with mass measurements of J0740, J0437 and J0614 included through NICER M-R likelihoods

See NEoST: https://xpsi-group.github.io/neost/overview.html

PP parametrization equation

Each polytrope given by $p(\rho) = K \rho^{\Gamma}$ such that $\epsilon(p) = (1 + a)(p/K)^{1/\Gamma} + p/(\Gamma-1)$

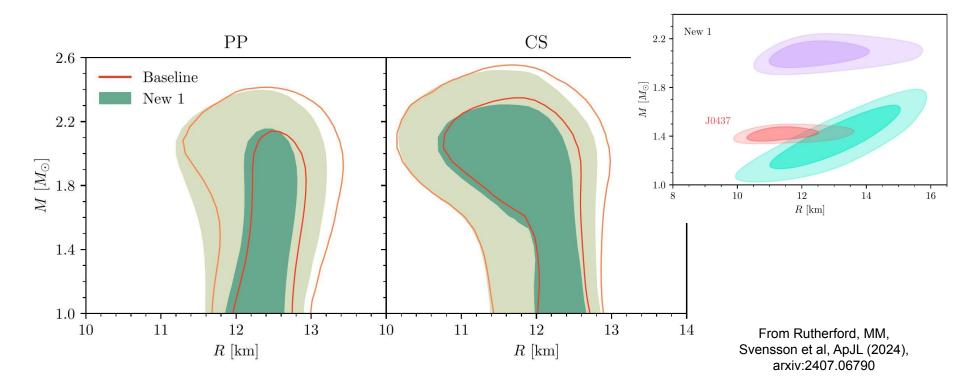
Parameter ranges are:

For χ_{EFT} up to $1.1n_0$, Γ_1 : [1, 4.5], Γ_2 : [0, 8], Γ_3 : [0.5, 8], ρ_{12} : [1.5, 8.3], ρ_{23} : [1.5, 8.3]

For χ_{EFT} up to $1.5n_0^{}$, $\Gamma_1^{}$: [0, 8], $\Gamma_2^{}$: [0, 8], $\Gamma_3^{}$: [0.5, 8], $\rho_{12}^{}$: [2, 8.3], $\rho_{23}^{}$: [2, 8.3]

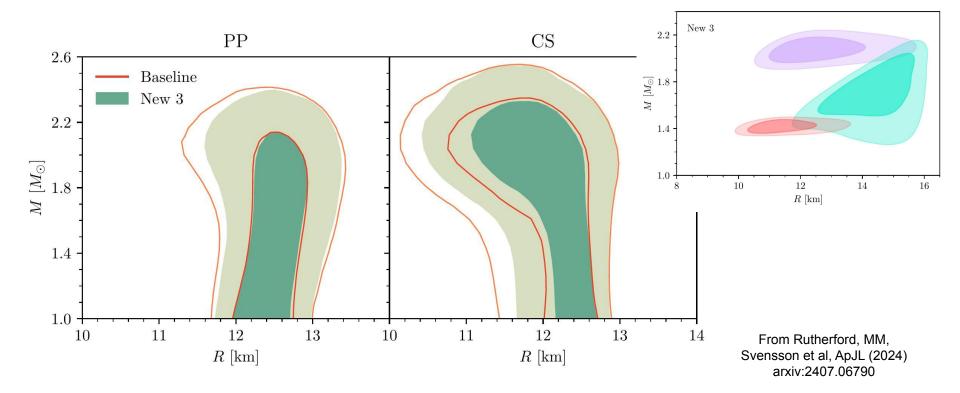
CS parametrization equation

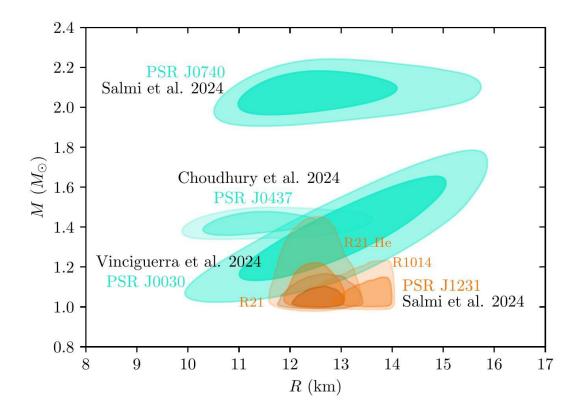
High density EOS given by


$$c_s^2(x)/c^2 = a_1 e^{-rac{1}{2}(x-a_2)^2/a_3^2} + a_6 + rac{rac{1}{3}-a_6}{1+e^{-a_5(x-a_4)}},$$

a₆ to match χ_{EFT} band. Fermi liquid theory (FLT) limit is $c_s^2 FLT(1.5 n_0)/c^2 \le 1/m_N^2 (3\pi^2 n)^{2/3}$

With a_1 :[0.1,1.5], a_2 :[1.5,12], a_3 :[0.05,2], a_4 :[1.5,37], a_5 :[0.1,1] a_1 outside this range fails maximum mass constraint or causality


Other hot spot scenarios


Other hot spot scenarios

Other NICER released data

Other hot spot models for J0614

Figure from Mauviard, Guillot et al, ApJ submitted (2025), arxiv:2506.14883