Deriving Progenitors of **Extremely Metal-poor Stars with Nucleosynthesis Yields of Massive Stars**

Ruizheng Jiang, Gang Zhao, Haining Li, Qianfan Xing and Wenyu Xin 2025/06/16@Girona

Cosmological simulations of structure formation

Schematic overview of the topics related to near-field cosmology

Frebel A, Norris JE. 2015.

Annu. Rev. Astron. Astrophys. 53:631–88

- Metal-poor stars are local Universe

Abundance Fitting

First Stars Metal-free: Z = 0

Evolutio Stellar

2nd-Gen./EMP Stars **Abundance Pattern**

atior

igh-Spe

Supernova Expl. **Chem. Enrichment**

Examples

SN II produces LIGHT elements

Pop III SNe before zinc

Graphic created by Jennifer Johnson

AGB contamination

Astronomical Image Credits: ESA/NASA/AASNova

SN II produces **LIGHT** elements

Pop III SNe before zinc

Other filters

Hard to measure (e.g. potassium) 1. Large discrepancies between obs. and theory 2. (scandium & chromium)

Element considered

Odd element: sodium, aluminum

AGB contamination

- α -element: carbon, magnesium, silicon, calcium and titanium
- Iron group: manganese, iron, cobalt and nickel

SN II produces **LIGHT** elements

Pop III SNe before zinc

Other filters

1. 2. (scandium & chromium)

Element considered

 α -element: carbon, magnesium, silicon, calcium and titanium Odd element: sodium, aluminum Iron group: manganese, iron, cobalt and nickel

AGB contamination

Hard to measure (e.g. potassium) Large discrepancies between obs. and theory

Abundance Distribution of Homogeneous Subsamples

Traditional Inversion: <u>Point Estimation</u> Easy & fast by χ^2 minimum <u>Seriously</u> affected by uncertainties (model & obs)

Bayesian statistics: $p(\boldsymbol{\theta}|\mathbf{y}) \propto \pi(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})$ **Two-dimensional distribution of EMP progenitor properties**

40 50 70 100 ZAMS Mass M_{\odot}

 θ progenitor property; y abundance pattern

Bayesian statistics: $p(\boldsymbol{\theta}|\mathbf{y}) \propto \pi(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})$ **Two-dimensional distribution of EMP progenitor properties**

How about using Monte Carlo method?

Bayesian and uncertainties considered

XSlow, hard to converge in an acceptance iterations

 θ progenitor property; y abundance pattern

Influence of individual elements

Sensitivity of each element based on Bayesian framework

• Sensitivy: **DEVIATION** of the progenitor mass under a typical observational uncertainty (0.1 dex).

Influence of individual elements

- Sensitivity behaves differently when carbon is included/excluded.
- Possibly due to lack of explain. for large dispers. of carbon abundances.
- Carbon is not included in further analysis.

Pop III SNe Mass-Energy Distribution (MER): $M \propto E^2$ Low-mass HNe excluded 10.0 \mathcal{D} 5.0 **Explosion Energy** 3.0 2.4 1.5 70 20 25 30 50 10 15 40

ZAMS Mass M_{\odot}

 $\log E = a + b \log M$ with $a = -2.26 \pm 0.00, b = 2.07 \pm 0.02$

Population III Initial Mass Function

Comparison against diff. SN models

- KEPLER: Power-law distribution
 Jiang et al. 2024 (transparent orange)
 Jiang in prep. (solid orange)
- HOSHI: Log-normal distribution
 Ishigaki et al. 2018 (transparent blue)

Normalizing model resolution with Bayesian Inference

A general <u>**POWER-LAW</u>** distribution is consistent</u>

Large discrepancy at ~ $25 M_{\odot}$

First Stars

Chemical Enrichment

Fitting IMF & EDF with explodability

1.	Modified IMF & EDF		1.00
			0.75
	$p(M) \propto \zeta(M)M^{-\alpha_m}$	tion	0.50
2.	Explodability $\zeta(M)$,	Func	0.25
	two concentrated intervals	nsity	0.00
	∫ 1, (9.6,15) ∪ (30,35)	e Dei	
	$\begin{cases} 1 \\ 0 \\ 15 \\ 20 \\ 11 \\ 125 \\ 100$	ativ	1.00
	$(0, (13, 30) \cup (33, 100)$	mul	0.75
2		Cu	0.50
3.	<u>Uncertainty broadening</u> with		0.25
	Gaussian kernel in log space		0.00
	$p(\log M) * G(\log M; \sigma_{\log M})$		

EMP Stars

Further test for $\alpha_m \& \alpha_e$ with MER $M \propto E^2$

 $1.00 \cdot$

Transformation of probability:

$$p(M) dM = p(E) dE$$

$$M^{-\alpha_m} dM \propto M^{-2\alpha_e+1} dM$$

$$m + 1 = 2\alpha_e$$
Using best-fit parameters:

$$\alpha_m + 1 = 1.76 \pm 0.16$$

$$2\alpha_e = 1.88 \pm 0.32$$

$$0.75$$

$$0.75$$

$$0.75$$

$$0.00$$

SUMMARY

(a) Pop III IMF: explodability-modifying <u>POWER-LAW</u> ($\alpha = 0.76$) (b) First SNe Mass-Energy Relation: $\underline{M \propto E^2}$

(a) Pop III IMF with different SN models

(b) Mass-Energy distribution of first supernova

