Measuring decays of excited states in ²⁶Si to improve reaction rate calculations of ²²Mg(α,p)²⁵Al relevant to type I X-ray bursts

Dr Johann W. Brümmer

Outline

- Introduction
- Reactions of importance to XRBs
- Overview of the iThemba LABS facility, the K600 magnetic spectrometer and the CAKE silicon array
- Strategy of measuring various (α, p) reactions on unstable nuclei using stable beams
- Summary

What are XRBs and why do we study them?

- Large, sudden increase of x-ray luminosity for 10s-100s
- Binary system with neutron + donor star (red giant) that encroaches Roche lobe
- H/He rich material accretes onto neutron star surface, initiate thermonuclear runaway
- Importance and relevance to nuclear matter EOS, neutron star properties such as compactness (important sites for nucleosynthesis), composition, mass-radius ratio etc.
- One of the most abundant occurrences in the galaxy
- Uncertainties in (p,γ), (α,p), and (α,γ) reaction rates are important to constrain
- Need breakout from the HCNO: ¹⁸Ne(α,p)²¹Na, other α-induced reactions
- Measure indirectly with the K600 and the CAKE

3

GIANT

Reactions of importance

Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}\mathrm{O}(\alpha, \gamma)^{19}\mathrm{Ne}$	D	16	1
2	⁵⁶ Ni(α , p) ⁵⁹ Cu	U	6.4	1
3	${}^{59}Cu(p, \gamma){}^{60}Zn$	D	5.1	1
4	${}^{61}\text{Ga}(p, \gamma){}^{62}\text{Ge}$	D	3.7	1
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
6	$^{14}O(\alpha, p)^{17}F$	D	5.8	1
7	23 Al(p, γ) 24 Si	D	4.6	1
8	¹⁸ Ne(α , p) ²¹ Na	U	1.8	1
9	63 Ga(p, γ) 64 Ge	D	1.4	2
10	19 F(p, $\alpha)^{16}$ O	U	1.3	2

^a Up (U) or down (D) variation that has the largest impact.

^b $M_{LC}^{(i)}$ in units of 10^{38} erg s⁻¹.

R.H. Cyburt et al., APJ 830 (2016)

Variations in light curves: (p,γ) and (α,p) reactions

5

emba

The iThemba LABS facility

The K600 and the Coincidence Array for K600 Experiments (CAKE)

7

The ²⁸Si(p,t)²⁶Si measurement

- Measure information regarding the decay of states from the recoil ²⁶Si nucleus to the ground state various excited states in ²⁵Al with the CAKE.
- Calculate proton branching ratios above $S_{\alpha} = 9.164$ MeV to $E_x = 13$ MeV (Gamow window: 0.1-2 GK)
- Aim: observe resonances in ²⁶Si above alpha threshold. Address uncertainty in spin-parities of the measured states and the lack of resonance data above $E_x = 10 \text{ MeV}$
- Recent results* have added to the current dataset of rate estimations for this reaction by means of direct measurements

* J.S. Randhawa et al., PRL 125 (2020), J. Hu et al., PRL 127 (2021), H. Jayatissa et al., PRL 131 (2023)

The ²⁸Si(p,t)²⁶Si measurement

- First (in)elastic scattering measurement
- of ²⁵Al + p at RIKEN Nishina RIB facilty
- Spin-parities of 4 resonances above S_{α}

J. Hu et al., PRL 127 (2021)

National Research

Foundation

emba

Laboratory for Accelerator

Based Sciences

Reactions induced by α-particle capture in XRBs

Advancing knowledge. Transforming lives. Inspiring a nation.

10

Measurements at RIB facilities

- σ_(p0,α) to σ_(α,p0)
 Scale by factor 3 to compensate for missing channels
- Based on HF formalism

P. Salter et al., PRL 108 (2012)

Previous measurements

13

National Research

Foundation

Laboratory for Accelerator

Based Sciences

Previous measurements

Results from the ²⁴Mg(p,t)²²Mg measurement

T. Rauscher, SMARAGD code, v0.10.2

National Research

Foundation

Laboratory for Accelerator

Based Sciences

Summary and outlook

National Research

Foundation

I aboratory for Accelerator

Based Sciences

- The K600 magnetic spectrometer and the CAKE is a powerful coincidence combination to perform interesting measurements relevant to the field of nuclear astrophysics
- Experiments, performed in the past, have demonstrated strong potential to generate high-quality datasets and yield interesting results and conclusions
- We aim to measure further possible reactions with the K600 and the CAKE to which XRBs are sensitive
- Concentrate on reactions whose uncertainties greatly influence model predictions
- Similar measurements will be proposed for upcoming beamtime

Thank you for your attention

National Research

Foundation

Laboratory for Accelerator

Based Sciences

- A special thank you to all collaborators:
- P. Adsley¹, T. Rauscher², R. Neveling³, A. Bahini^{3,4}, J.A.C. Bekker^{3,4},
 S.D. Binda^{3,4}, L.M. Donaldson³, S. Jongile³, T. Khumalo³, R.E. Molaeng^{3,4},
 L. Pellegri^{3,4}
- ¹Cyclotron institute and department of physics and astronomy, Texas A&M, USA
- ²Department of Physics, University of Basel, Switzerland and Centre for Astrophysics Research, University of Hertfordshire, Hatfield, United Kingdom
- ³iThemba LABS, South Africa
- ⁴University of the Witwatersrand, South Africa

