Nucleosynthesis in core-collapse supernovae

Almudena Arcones

Equation of state Neutrinos

 $-(\lambda_{(n,\gamma)} + \lambda_{(\gamma,n)} + \lambda_{\beta})Y(Z,N)$

Nuclear physics: masses, beta decays, reaction rates, fission (barriers and yield distribution)

Astrophysics:

density and temperature evolution: $\rho(t)$, T(t)initial composition (at high T: NSE $\Rightarrow Y(Z,N) = f(\rho, T, Y_{\rho})$) https://github.com/nuc-astro Reichert et al. 2023

Astrophysics:

density and temperature evolution: $\rho(t)$, T(t)initial composition (at high T: NSE $\Rightarrow Y(Z,N) = f(\rho, T, Y_{\rho})$)

Astrophysics:

density and temperature evolution: $\rho(t)$, T(t)initial composition (at high T: NSE $\Rightarrow Y(Z,N) = f(\rho, T, Y_{\rho})$)

Jan Kuske Poster [arXiv:2506.00092]

nuclear - astro connections

Neutron star mergers EoS -> simulations -> r-process -> kilonova Jacobi et al., MNRAS 2024, Ricigliano et al., MNRAS 2024

Magneto-rotational supernovae: r-process?

Neutrino-driven supernovae

Mattes, Yasin, Witt, Arcones

Supernova nucleosynthesis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

Nuclear statistical equilibrium (NSE)

charged particle reactions a-process

r-process weak r-process νp -process

Core-collapse supernova yields for galactic chemical evolution (GCE)

Supernova nucleosynthesis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

Nuclear statistical equilibrium (NSE)

charged particle reactions a-process

r-process weak r-process νp -process

Core-collapse supernova: weak r-process

Neutrino-driven supernovae: elements up to Ag Combine astrophysics and nuclear physics uncertainties Motivation and support for experiments at NSCL, ANL, TRIUMF, ATOMKI

Astrophysics uncertainties/variability

Steady-state model: all possible conditions and nucleosynthesis pattern in neutrino-driven ejecta Based on Otsuki et al. 2000: study of 3 000 trajectories

Bliss, Witt, Arcones, Montes, Pereira (2018)

Astrophysics uncertainties/variability

Steady-state model: all possible conditions and nucleosynthesis pattern in neutrino-driven ejecta 10^{8} Based on Otsuki et al. 2000: study of 3 000 trajectories 10^{7}

Four characteristic patterns 10^{6} Density $[0^{10} \text{ Density}]$ 10 10^{-3} 10 \rightarrow 10⁻⁵ Hordance 400 Hordan 10^1 10^{0} 10⁻³ 10^{0} 10^{-4} 10^{-2} 10^{-1} 10^{-} Time [s] 10^{-8} 10^{-9} 10 15 20 10^1 5 10^{-2} Temperature [GK] 10^{-3} 10^{0} 10_ \rightarrow 10⁻⁵ 10⁻⁶ 10^{-7} 10^{-1} 10 ' 10^{-9} 10⁻³ 10^{-1} 10^{-4} 10^{-2} 10^{0} 10 15 20 5

Time [s]

Bliss, Witt, Arcones, Montes, Pereira (2018)

Astrophysics uncertainties/variability

Steady-state model: all possible conditions and nucleosynthesis pattern in neutrino-driven ejecta 10^{8} Based on Otsuki et al. 2000: study of 3 000 trajectories 10^{7}

Four characteristic patterns 10^{6} Density $[0^{10} \text{ Density}]$ 10 10^{-3} 10 \rightarrow 10⁻⁵ Hordance 400 Hordan 10^1 10^{0} 10⁻³ 10^{0} 10^{-4} 10^{-2} 10^{-1} 10^{-} Time [s] 10^{-8} 10^{-9} 10 15 20 10^1 5 10^{-2} Temperature [GK] 10^{-3} 10^{0} 10_ \rightarrow 10⁻⁵ 10⁻⁶ 10^{-7} 10^{-1} 10^{-6} 10^{-9} 10⁻³ 10^{-1} 10^{-4} 10^{-2} 10^{0} 10 15 20 5

Time [s]

Bliss, Witt, Arcones, Montes, Pereira (2018)

Nuclear physics uncertainty

Path close to stability:

- masses and beta decays known
- beta decays slow •
- (α, n) reactions move matter to higher Z

time : 9.936e-03 s, T : 4.193e+00 GK, ρ : 2.481e+05 g/cm³

Sensitivity study

Independently vary each (α ,n) reaction rate between Fe and Rh by a random factor

Include theoretical and experimental uncertainties \rightarrow log-normal distributed rates ($\mu = 0, \sigma = 2.3$)

36 representative trajectories of group CPR2, 10 000 Monte Carlo runs

Bliss et al., PRC (2020)

Sensitivity study: key reactions

Spearman rank order correlation

Bliss et al., PRC (2020)

$$\frac{\sum_{i=1}^{n} \left(R(p_i) - \overline{R(p)} \right) \left(R(y_i) - \overline{R(y)} \right)}{\left(R(p_i) - \overline{R(p)} \right)^2 \sqrt{\sum_{i=1}^{n} \left(R(y_i) - \overline{R(y)} \right)^2}}$$

→ Monotonic changes

 \rightarrow -1 $\leq \rho_{\text{corr}} \leq$ +1

Sensitivity study: key reactions

Key reactions \Rightarrow large correlation + significant impact on abundance for several astro conditions

Reaction	Ζ	MC tracers
59 Fe(α , n) 62 Ni	39 - 42, 45	34, 36
68 Fe(α , n) 71 Ni	36, 37	3
${}^{63}\mathrm{Co}(\alpha,n){}^{66}\mathrm{Cu}$	39-42, 45	20, 34, 36
71 Co(α , n) 74 Cu	36, 37	3
74 Ni(α , n) 77 Zn	36–42	2, 3, 17, 18, 32
76 Ni (α, n) 79 Zn	36–42	2, 3, 18, 32
67 Cu(α , n) 70 Ga	47	35
77 Cu(α , n) 80 Ga	37	3
72 Zn (α, n) 75 Ge	39–42	36
76 Zn (α, n) 79 Ge	36, 37–42	2, 3, 17, 18, 32
78 Zn (α, n) 81 Ge	36, 37–42	2, 3, 17, 18, 32
79 Zn (α, n) 82 Ge	36, 37–42	2, 3, 18, 32
80 Zn(α , n) 83 Ge	36, 37, 39–42	2, 3, 18, 32
81 Ga(α , n) 84 As	36, 38, 39, 41	17, 32
78 Ge $(\alpha, n)^{81}$ Se	39–42	36
${}^{80}\text{Ge}(\alpha, n) {}^{83}\text{Se}$	36–39, 42	28, 33, 36
82 Ge (α, n) 85 Se	36–39, 41	11, 17, 19, 27, 28, 33
83 As(α , n) 86 Br	36, 37, 41	11, 26, 27, 28, 33
84 Se (α, n) 87 Kr	36-42, 44, 45	2, 6, 7, 8, 9, 10, 11, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 36
85 Se(α , n) 88 Kr	36-42, 44, 45	2, 6, 7, 8, 9, 10, 11, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31
85 Br(α , n) 88 Rb	37–39	6, 7, 8, 9, 10, 22, 23, 24, 26, 28, 29, 30, 31
${}^{87}\mathrm{Br}(\alpha,n){}^{90}\mathrm{Rb}$	37, 39	6, 9, 10, 29, 31
88 Br(α , n) 91 Rb	39	26
${}^{86}\mathrm{Kr}(\alpha,n){}^{89}\mathrm{Sr}$	38-42, 44, 45, 47	4, 5, 7, 8, 13, 14, 15, 16, 20, 24, 25, 33, 34, 35

Bliss et al., PRC (2020)

Identify key reactions

Key reactions \Rightarrow large correlation + significant impact on abundance ratios

Identify key reactions

Key reactions \Rightarrow large correlation + significant impact on abundance ratios

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

ATOMKI experiment for ⁸⁶Kr (α ,n)⁸⁹Sr \longrightarrow one reaction enough to reduce nuclear uncertainty

Kiss et al., ApJ (2025)

Magneto-rotational supernovae

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

- Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment
- Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018
- First simulations of explosions with magnetic fields and
- detailed neutrino transport (Obergaulinger & Aloy 2017, Kuroda et al. 2020), and
- their nucleosynthesis (Reichert et al. ApJ 2021, Reichert et al. MNRAS 2023)

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

Open questions

- Long-time evolution: Magnetar (neutron star) vs. Collapsar (black hole): r-process possible?
- Impact of magnetic field strength and morphology on nucleosynthesis Reichert et al. MNRAS (2024)

- Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment
- Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018
- First simulations of explosions with magnetic fields and
- detailed neutrino transport (Obergaulinger & Aloy 2017, Kuroda et al. 2020), and
- their nucleosynthesis (Reichert et al. ApJ 2021, Reichert et al. MNRAS 2023)

Nucleosynthesis based on 2D and 3D simulations with detailed neutrino transport Impact of magnetic field strength and configuration Reichert et al. MNRAS (2023)

Reichert et al. ApJ (2021)

Reichert et al. MNRAS (2023)

Obergaulinger & Aloy 2017 Obergaulinger et al. 2020

S

Nebula phase: Can we observe emission lines from freshly synthesized r-process elements?

Ricigliano, Hotokezaka, Arcones, submitted: arxiv:2502.15896

SN 1987A

Nebula phase: Can we observe emission lines from freshly synthesized r-process elements?

Nebula model: heating and cooling also from r-process

Ricigliano, Hotokezaka, Arcones, submitted: arxiv:2502.15896

R-process emission lines

SN 1998bw associated to GRB 980425

Patat et al. 2001

Short rise time, narrow light peak, huge luminosity, broad spectral lines

Decrease of continuum

Still high luminosity, narrow spectral lines, low ionization

R-process emission lines

SN 1998bw associated to GRB 980425

Heavy elements in spectrum

Ricigliano, Hotokezaka, Arcones, submitted: arxiv:2502.15896

Heavy elements in spectrum

Ricigliano, Hotokezaka, Arcones, submitted: arxiv:2502.15896

- Multimessenger astronomy: electromagnetic + gravitational waves + neutrinos
- Advanced astrophysical simulations + detailed **physics** (supercomputers)
- New experimental frontier: extreme-neutron rich nuclei at FAIR, FRIB, RIKEN, ISOLDE, TRIUMF,...
- Increased number observations of **oldest stars**, meteorites, grains, earth crust, ...

- Multimessenger astronomy: electromagnetic + gravitational waves + neutrinos
- Advanced astrophysical simulations + detailed **physics** (supercomputers)
- New experimental frontier: extreme-neutron rich nuclei at FAIR, FRIB, RIKEN, ISOLDE, TRIUMF,...

Origin and history of heavy elements in the Universe

