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The detectors of the LIGO/Vlrgo/KAGRA collaboration

Network of detectors:
e Laser Interferometer Gravitational-wave
Observatory (LIGO) in the USA
o Hanford (Washington) LIGO

o Livingston (Louisiana)

e Virgo in ltaly /M}\A RGD

e Kamioka Gravitational Wave ,Detector
(KAGRA) in Japan KAGRA

Livingston Hanford

Credits: LIGO Caltech https://www.ligo.caltech.edu/

Credits Massimo D'Andrea/EGO

KAGRA website



The Gravitational Wave signal

Dietrich,Hinderer & Samajdar, Gen Relativ Gravit 53, 27 (2021)
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The instruments detect ripples in space-time
caused by violent and high energy events in
the Universe, such as the merger of two
compact objects.
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The Gravitational Wave signal

The instruments detect ripples in space-time
caused by violent and high energy events in
the Universe, such as the merger of two
compact objects.

Michelson interferometer technology

The form (phase and amplitude) of the
gravitational wave emitted by the event depends

on:
e Extrinsic binary parameters: sky

localization, luminosity distance etc.
e Intrinsic parameters: object’s , Spins,
etc.

The nature of the compact objects merging is
imprinted in the waveform that is detected.
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Dietrich,Hinderer & Samajdar, Gen Relativ Gravit 53, 27 (2021)
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Simulations made with PyCBC: https://doi.org/10.5281/zenodo.10473621




Observing schedule for the LVK collaboration
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https://observing.docs.ligo.org/plan/

e 3 runs done with published catalogues (GWTC-3).
e Currently at the beginning of the O4c run.

e Detectors are characterized by their Binary Neutron Star (BNS) range.


https://observing.docs.ligo.org/plan/

Observing schedule for the LVK collaboration

01+02+03 = 90, O4a* = 81, O4b* = 27, Total = 198
|* O4a and 04b entries are preliminary candidates found online.
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LIGO-G2302098(e1ff7191), updated on 18 June, 2024 Time ( Days ) Credit: LIGO-Virgo-KAGRA Collaboration

e 3 runs done with published catalogues (GWTC-3).
e Currently at the beginning of the O4c run.
e Detectors are characterized by their Binary Neutron Star (BNS) range.



Observations from the first 3 runs of LVK

A lot of Black Holes and just a few (NS).

Masses in the Stellar Graveyard

@

GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run



Observations from the first 3 runs of LVK

A lot of Black Holes and just a few (NS).

Masses in the Stellar Graveyard
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Observations from the first 3 runs of LVK

A lot of Black Holes and just a few (NS).
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Observations from the first 3 runs of LVK

A lot of Black Holes and just a few (NS).

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

THE ASTROPHYSICAL JOURNAL LETTERS, 915:L5 (24pp), 2021 July 1 https:/ /doi.org/10.3847/2041-8213 /ac082e
© 2021. The Author(s). Published by the American Astronomical Society

(@ OPEN ACCESS

CrossMark

Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences [

GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run



Observations from the first 3 runs of LVK

A lot of Black Holes and just a few (NS).

Masses in the Stellar Graveyard
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GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run



Neutron star observations with Gravitational Waves

NS features revealed by the waveform of a NS merger: 3/5 m
o (myms) My

e the masses of the compact objects impact the waveform M, = q=—
o measure chirp mass (M. and mass ratio (q) (my + me) /5 my

h, (x10~22)
o

~410 ~30 220 ~10 0

time (s)
Simulations made with PyCBC: https://doi.org/10.5281/zenodo.10473621



NS features revealed by the waveform of a NS merger:

Neutron star observations with Gravitational Waves

e the masses of the compact objects impact the waveform

measure chirp mass (M. and mass ratio (q)

e the tidal deformability of the compact objects impact the
waveform

neutron stars can be deformed by a neighboring

gravitational field: tides imprints on the waveform

measure effective tidals A and 5 from the late inspiral
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Probing the Equation of State with NS-NS mergers

inside NSs (in inspiral) is described by the beta-equilibrated and dense matter (EoS).

e 1EoS model = 1A (M )sequence = 1A(M.,,q)
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GWTC-1 Phys. Rev. X9, 031040 (2019) and GWTC-2 Phys. Rev. X11, 021053 (2021)
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Probing the Equation of State with NS-NS mergers
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Probing the Equation of State with NS-NS mergers

Matter inside NSs (in inspiral) is described by the beta-equilibrated and dense matter Equation of State (EoS).

e 1EoS model = 1A (M )sequence = 1A(M.,,q)
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Equation of State Bayesian inference
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Probing the Equation of State with NS-NS mergers

inside NSs (in inspiral) is described by the beta-equilibrated and dense matter

e 1EoS model = 1A (M )sequence = 1A(M.,,q)
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(EoS).

Equation of State Bayesian inference

Pressure P (MeV fm9)

GW170817: softening of the EoS
Combining multi-messenger constraints
o  astronomy: Xray, radio...
o nuclear physics experiments

HIC plus astrophysics

---- Prior
— Astro + HIC
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Post-merger and nucleosynthesis

counterparts of NS involved mergers.
Remnant matter in the environment
r-processes in the ejecta or remnant matter, source of heavy element production
Kilonova: signature of radioactive decays of heavy nuclei.
o We observed it for GW170817 !

The Origin of the Solar System Elements
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A Neutron Star-Black Hole merger from O4: GW230529

Observation of Gravitational Waves from the Coalescence
of a 2.5-4.5 My Compact Object and a Neutron Star

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION
; H HIH “ ”
Primary = large mass m1 Primary is filling the

Secondary = small mass m2 between neutron stars and
previously-observed BBH
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A Neutron Star-Black Hole merger from O4: GW230529

Observation of Gravitational Waves from the Coalescence
of a 2.5-4.5 M Compact Object and a Neutron Star

What did we learn from the NS ?
° Uninformative tldal pOSterior fOI’ the neutron THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION
star...
e No constraints on the equation of state. 1097 5
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Landry & Essick Phys. Rev. D 99, 084049 9
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A Neutron Star-Black Hole merger from O4: GW230529

Observation of Gravitational Waves from the Coalescence

What did we learn from the NS ? of a 2.5-4.5 M, Compact Object and a Neutron Star
° Uninformative tidal PO sterior for the neutron THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION
star...
e No constraints on the equation of state. o
10k — Mpm,min =0 Mo
Yet the source has implications for electromagnetic '\‘ == M min = 0.1 Mo
brightness and heavy element production 3 GWTC-3
e No observed EM counterpart... ~ qpt -:‘,\:‘ = With GW230529
e 10% tidal disruption probability of the NS & n
e Remnant baryon mass < 0.052M 2
(99% credibility) &
e Fraction of NSBH mergers with remnant matter & 10%F
0 < (.18 (with X-Ray data 0.13%% ). a
e NSBH contribution to:
o heavy element prodgction: . .
atmost  1.1Mg/Gpc”/yr ! 0.2 0.3 0.4

. 3
o GRB:small < 23/Gpc®/yr Feiiiidn = FiMBe s ME o)



Next generation of detectors: what to expect ?

Project for future detectors:
e LIGO India
o  SKky localization enhanced
o Construction to be completed end 2030s

Courtesy of D. Chatterjee
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Next generation of detectors: what to expect ?

Project for future detectors:
e LIGO India
o  SKky localization enhanced
o Construction to be completed end 2030s
e Cosmic Explorer (USA)
o 40km long arms
o  Looking for sites and willing communities
o NSF-funded, conceptual design underway.

https://dcc.cosmicexplorer.org/CE-G2300014
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Next generation of detectors: what to expect ?

Project for future detectors:
e LIGO India
o  Sky localization enhanced
o Construction to be completed end 2030s
e Cosmic Explorer (USA)
o 40km long arms
o Looking for sites and willing communities
o NSF-funded, conceptual design underway.
e Einstein Telescope (Europe) Vel
o Either triangle (10km) or 2 L-shape (15km)
detector, underground and cryo.
o Two candidate sites: Sardinia or
Netherland/Belgium/Germany
o Science operation ~ 2035
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Next generation of detectors: what to expect ?

crojecl ot e defeciors: The Gravitational Wave Spectrum
e LIGO India

o  Sky localization enhanced
o  Construction to be completed end 2030s B':,g{gj;p;;g’jgj';jj';°k

Quantum fluctuations in early universe
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o 40km long arms 5 Galaxy & beyond
o Looking for sites and willing communities 8 Com R :
o  NSF-funded, conceptual design underway. i _
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o Science operation ~ 2035 Cosmic Microwave Pulsar Timing Space Terrestrial
Background Interferometers  Interferometers

e Laser Interferometer Space Antenna (LISA)
o Triangular space base detector
o ESA + NASA collaboration
o Launch mid 2030s

Polarization

Detectors

Credit:NASA/ WMAP Science Team



Next generation of detectors: what to expect ?

Project for future detectors:
e LIGO India
o  SKky localization enhanced
o Construction to be completed end 2030s
e Cosmic Explorer (USA)
o 40km long arms
o  Looking for sites and willing communities
o NSF-funded, conceptual design underway.
e Einstein Telescope (Europe)
o Either triangle (10km) or 2 L-shape (15km)
detector, underground and cryo.
o Two candidate sites: Sardinia or
Netherland/Belgium/Germany
o Science operation ~ 2035
e Laser Interferometer Space Antenna (LISA)
o Triangular space base detector
o ESA + NASA collaboration
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Conclusion

Gravitational wave detections expanded
the field of Astronomy.
Currently on the of the
LIGO/Virgo/KAGRA collaboration.

A few mergers involving NSs have taught
us about neutron rich and dense matter

behavior.
Kilonova detections signal heavy b
element prOdUCtion in NS inVO|Ved Credit: NSF/LIGO/Sonoa tate Ur;i\;;r;it/A. Simonnet
mergers.
will see Acknowledgements

) . J. Read, J. Smith, D. Chatterjee,
further (more sources) and with higher Sunny Ng, P. Landry. .
precision (better constraints).
Continuously working towards a better "This material is in part based upon work supported

by NSF's LIGO Laboratory which is a major facility

analysis of NSs. fully funded by the National Science Foundation." 11
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http://www.youtube.com/watch?v=V6cm-0bwJ98
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A X (degr/100 Mpc)

Read 2023, Class. Quantum Grav. 40 135002
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