Elemental Abundances of Extremely Metal-Poor Stars

Collaborators: T. Hartwig, C. Kobayashi, N. Tominaga, K. Nomoto, S. Wanajo, T. Takiwaki, K. Nakamura, W. Aoki, Y. Takeda, PFS Galactic Archaeology science working group, inspiring discussion with many others!

Nucleosynthesis in the early universe: What did we learn from the abundances of Extremely Metal-Poor (EMP) stars?

- The basic picture
 - EMP as a probe of the nature of the first stars and their supernovae
- Challenges in the abundance interpretation
 - "mono-" vs. "multi-" enriched EMPs
 - Abundances of odd-Z elements: the case of Potassium (K)
- Future Prospects go beyond the solar neighborhood

Abundances of EMPs: A basic picture

EMP stars in our Galaxy

Elemental abundance ratios from surveys

385 Very metal-poor stars from LAMOST + Subaru survey

A small scatter in Fe-peak elemental abundances

→ the nucleosynthesis sources are independent of the birth environment

Cayrel+04, Cohen+13, Yong+13, Roederer+14

A few outliers hinting at unusual metal source in the early Universe

Xing+19, 23, Skúladóttir+24

About 30 % of the Main-Sequence Turn-Off stars are "CEMP", half of them are "CEMP-no"

First star's supernovae as a possible origin of CEMP-no

Abundance distribution after a first star's supernova

→ Simultaneously reproduce the variation in Carbon enhancement and the small scatter in Fe-peak elements observed in the EMP stars MI+14

The variation in the CEMP abundances: first star's masses or the properties of their supernovae

Properties of the first star's supernovae infered by the abundances of EMP stars

MI, Tominaga, Kobayashi & Nomoto18

The (χ^2 -weighted) histogram of the progenitor masses of the best-fit first stsr's SN yield models

The observed abundances of EMPs are best explained by the first star's supernovae with a few tens of M_{\odot} , little contribution from more massive first stars Tominaga+14, Placco+14, MI+18

A certain fraction of the stars are better explained by a supernova of high-explosion energy ("hypernova")

← High [Zn/Fe] aundance ratios

Tominaga+09, Nomoto+13, Grimmett+21

The abundances of EMP: realistic pictures

Multi-enrichment of the first star's supernovae

The first stars form in binaries/clusters

Clark+11, Greif+15, Hirano & Bromm+17, Susa+19, Sharda+20, Sugimura+20

Elements supplied by multiple first star's supernovae

The formation of 'multi-enriched' EMP stars

- The assumption about the 'monoenrichment' may bias the inference on the properties of the first stars based on the abundances of EMP stars
- Challenging to constrain individual contributions (too many free parameters in the yield models, e.g., mass, explosion energy, fallback, mixing)

The classification of EMP stars into mono- and multi-enriched scenarios

Hartwig, MI, Kobayashi, Tominaga, & Nomoto23

1. Create mock observation as a training set

2. Training 10 Support Vector Machine (SVM) models based on 24 [X/Y] ratios (X, Y: C to Zn)

3. Validation

Accuracy: $\sim 70\%$ (w/o errors: $\sim 79\%$)

4. Applying to observational data: 462 unique EMP stars SAGA database (Suda+08), Ishigaki+18

The origin of observed abundance patterns in EMPs

The fraction of mono-enriched stars $(p_{\rm mono}>0.5)$: $31.8\%\pm2.3\%$

Abundances of odd-Z elements; Potassium

Credit: ESA/NASA/AASNova (created by Jennifer Johnson)

$$K (^{39}K,^{40}K,^{41}K), Z=19$$

- An essential element for life, the Earth's crust, etc.
- Astrophysical origins and the chemical evolution are highly uncertain. Similar for other odd-Z elements such as Sc (Z=21) or V (Z=23)

Nucleosynthesis sites

Woosley & Weaver 95, Thielemann+96, Nomoto, Kobayashi & Tominaga 13, Wanajo+18

Oxygen burning during the evolution of massive stars

Explosive nucleosynthesis at corecollapse supernovae

Open questions

Observations

Takeda+02, 09, Andrievsky+10, Sneden+16, Zhao+16, Reggiani+19; Kobayashi+20

- Observed K abundances are one order of magnitude higher than the predictions of the chemical evolution model.
- The resonance doublet (7664\AA , 7698\AA) are very weak (< a few percent of the continuum) in the EMP stars
- Contamination of telluric O_2 lines
- Sensitive to NLTE effects

Theories

- Rotatational mixing in massive stars
 Limongi+18, Prantzos+18
- Interactive C-O shells in massive stars Ritter+18
- Jetted aspherical supernovae Tominaga+-09
- Neutrino process in supernovae Kobayashi+11, Wanajo+18

The [K/Fe] scatter, correlation with other elemental abundances in EMP need to be quantified.

K abundances in EMP stars with Subaru/HDS

- All of the 18 stars show [K/Fe]_{NLTE} $\lesssim 0.8$ dex
- Among 7 stars with detected K lines:
 - The mean $[K/Fe]_{NLTE}: 0.36 dex$
 - The scatter: $0.13~{\rm dex}$ (typical observational uncertainty $\sim 0.15~{\rm dex}$)

• High-resolution ($R \sim 60,000$) spectroscopy with the High Dispersion Spectrograph

NLTE correction based on Reggiani+19

K abundances in EMP stars with Subaru/HDS

[K/Ca] scatter: 0.11 dex

[Na/Mg] scatter: 1.49 dex

The K yield in massive stars or supernovae is *independent* of the mechanism that causes the variation in Na/Mg

Prospects with wide-field spectroscopic surveys

Identification and chemical characterization of the local halo

→ H3, 4MOST, WEAVE, DESI, Milky Way Mapper

MSTO: $\sim 50 \text{ kpc}$

Bright RGB: $\gtrsim 300 \text{ kpc}$

Identification of EMPs in the Outer Milky Way

→ MOONS (VLT), PFS (Subaru)

What is missing from the current sample of metal-poor stars

Debris from merged dwarf galaxies, etc. Sharpe+22

Chemical abundances in the outer halo

- Lower mean metallicity
 Carollo+10, Ivezic+12
- A larger fraction of CEMP

Prime Focus Spectrograph (PFS) at Subaru Telescope

Instrument summary

- Field of view: 1.3 deg diameter
- 2386 reconfigurable fibers
- λ : 380-1260nm (3 channels: Blue, Red, IR)
- R: ~3000 (LR), ~5000 (MR)
- Scientific operation: March 2025 ~

PFS-Galactic archaeology survey (~ 100 nights in 5-6 years) will observe classical dwarf satellites, M31 and the outer Milky Way disk and halo

Summary

Nucleosynthesis in the early universe: What did we learn from the abundances of EMP stars?

- The basic picture
 - EMP as a probe of the nature of the first stars and their supernovae
- Challenges in the abundance interpretation
 - "mono-" vs. "multi-" enriched EMPs
 - For a give set of theoretical yield models, we can purify the EMP stars with monoenriched stars
 - Abundances of odd-Z elements: the case of Potassium (K)
 - The scatter of K abundances and their correlations with other elements constrain the physical condition of K synthesis beyond the conventional models
- Future Prospects go beyond the solar neighborhood
 - The on-going wide-field spectroscopic surveys will chapture the abundance diversity in EMPs by exploring larger volumes and wider distance ranges

