Explosive Hydrogen Burning

Hendrik Schatz

Department of Physics and Astronomy

Facility for Rare Isotope Beams

Center for Nuclear Astrophysics Across Messengers (CeNAM)

Michigan State University

Hot Explosive Hydrogen Burning

Hydrogen burns easily → need to inject hydrogen into hot and dense environment

Nova Explosion

X-ray Burst

This Talk

Neutron Star Inspiral Thorne-Zytkow Object

→ Talk by Alexander Hall-Smith

→ Poster by Sophie Abrahams

This Talk

→ Talk by Thanassis Psaltis

Novae Open Questions

- What nuclei do novae make?
 - Endpoint of nucleosynthesis?
 - Observed elements up to Ar, Ca?
 - Nucleosynthesis contribution?
 - Li, ¹³C, ¹⁵N, ¹⁷O, F?, P?
 - ²⁶Al observed via γ-rays: up to 75% (2D GCE Vasini et al. 2025)
- How is white dwarf material mixed into the ejecta?
 - Lots of multi-D efforts → impacts explosion
- Novae as multi-messenger sources?
 - Are there pre-solar grains from Novae? (use isotope anomalies to identify)
 - Can we detect nuclear γ -rays from 7 Be, 18 F, 22 Na? (so far only upper limits hint of 7 Be?)
 - What do GeV gamma-ray detections tell us?
 - Can we detect high energy neutrinos?
- What is the ultimate fate of the system?

~GeV v

Nuclear Physics in Nova Explosions

Accreting Neutron Stars are Observed as X-ray Binaries

Open Question: Neutron Star Properties from Light Curve?

→ Extract surface redshift (REF)
 to constrain compactness (mass, radius)
 → Burst frequency probes surface heat
 and NS interior (REF)

→ But - Need nuclear physics to extract information from light curve

→ Redshifts from bursts do provide Complementary EOS constrtaints

Open Questions: Is Material Ejected?

Spectral features in 4U 1820–30 with NICER

Jaisawal et al. 2025

Theory:

- Energy arguments Enuc/E_grav=~2.5%
- Burst+Wind model
 Herrera, Sala, Jose 2023: 2.6%
- → Contribution to the origin of the light p-nuclei?

Need nuclear physics to guide observations

Open Question: Multi-D Effects?

Reduced burst activity at high accretion rates

→ Multi-D?

Solved: See poster by Yuri Cavecchi

Quasi-Periodic Oscillations of X-ray flux

→ Multi-D? R-Modes?

Multi-peaked bursts

- → Multi-D? (Bhattacharyya et al. 2006)
- → Nuclear waiting points (e.g. Fisker et al. 2004, Lampe et al. 2016, Liyu et al. 2024 With MESA)?

2D modeling of flame spreading (Johnson & Zingale 2025)

Temperature: 0.186 GK

Based on model By A. Heger Mixed H/He

Challenge: Understanding αp -process

α p-process plays important role

- Fast energy production component
- Defines H/seed ratio and endpoint of rp-process – affects burst tail

Indirect and Direct Measurements of 34 Ar(α ,p)

Indirect: identify resonance states in ³⁴Ar(a,p) via ⁴⁰Ca(p,t) at iThemba

 (α,p) rates may be overestimated by x10-100

→ Confirmed by Lauer et al. 2025 populating resonances with ³⁷K(p,p) using ANASEN at NSCL/FRIB

 34 Ar(α ,p) direct measurement at NSCL/FRIB JENSA Gas Target + ORRUBA Si array

Direct Measurements of $^{22}Mg(\alpha,p)$

²²Mg(α ,p) with active target TPC

New measurement with MUSIC active target at ANL (Jayatissa et al. 2022)

→ Agrees with Theory

Randhawa et al. 2020

→ x8 lower than theory

Impact on observations

- → Significant changes in light curve
 → Hu et al. 2021 find better fit to data
- → Need to address discrepant measurements
- → Need to push to lower energy

Enhanced Importance of (α,p) in He-rich Bursts

Sultana, Estrade et al. TBP

Nuclei Stored in Neutron Stars do Interesting Things Too!

Accreting Neutron Stars as Quasi Persistent Transients Probe Neutron Star Physics

All Rare Isotopes in Neutron Star Crusts Within Reach at FRIB

New theory data available:

- New n-capture rates for degenerate neutrons (Knight et al. 2024)
- New shell model EC rates (Rahman et al. 2025)

Experiments needed:

- Mass measurements
- Gs-gs b-decay transition strengths

Recent Results from Total Absorption β-delayed γ-Spectroscopy with SuN at NSCL/FRIB

Trend: Weaker population of ground state than expected → Weaker Urca cooling

Cooling of KS1731-260 with Different Burst Ashes

Summary

- Novae and X-ray bursts are interesting
 - Many open questions that require nuclear physics
 - A broad range of multi-messenger observables need to be interpreted
 - Provide insights into the origin of the elements, explosive hydrodynamics, and dense matter physics
 - They are the two most frequent thermonuclear explosive events in the galaxy
 - Unique laboratories for extreme physics at our "doorstep"
- Addressing the outstanding problems requires
 - Progress in pinning down the nuclear physics from the proton drip line to the neutron drip line
 - Need a broad range of stable and radioactive beam facilities combined with nuclear theory BUT with modern RIB facilities ALL nuclei should be within reach (eventually)
 - Advanced multi-D hydrodynamics studies
 - An advanced MeV g-ray mission COSI would be an important first step; others are being planned

P-process Contribution?

1-zone Model: Extreme rp-process burst

GCE "Model:"

- 100 Sources at all times
- For 10¹⁰ years
- 10⁻⁸ solar masses/yr accretion
- → 10⁴ solar masses processed
- Mass of Galactic Disk 6x10¹⁰ solar masses
- Overproduction 10⁸
- → Need to process 6x10² solar masses
- → 6% ejection (Herrera et al. 3%, Weinberg et al. few%)

1-zone Model: Typical H/He Burst

Issues:

- Typical burst much lower overproduction (x100)
- Base of layer is most enriched, not necessarily what is ejected
- Not all bursts eject all the time
- → Would need unrealistic number of sources (Herrera et al.)

But: Lots of uncertainties, maybe ⁹²Mo, ⁹⁴Mo, ⁹⁶Ru, ⁹⁸Ru not enhanced everywhere?

Setup to Determine gs-gs β -Decay Branches

→ Unobserved decays are gs branch

Probe Urca Cooling Rates Via β -delayed Total Absorption Gamma Spectroscopy \rightarrow Get Strength of gs-gs β -decay transitions

International Research Network for Nuclear Astrophysics (IReNA) – Connects Astrophysics, Nuclear Physics,

CaNPAN Canadian Nuclear Physics for Astrophysics Network 10 Groups from 6 institutions

Joint Institute for Nuclear Astrophysics

Becoming

Center for Nuclear Astrophysics across Messengers

57 Institutions, 82 Senior Participants

Ibero American Network for **Nuclear Astrophysics** 27 Scientists from 6 accelerator aboratories in 6 countries.

BRIDGCE UK 70 members from 19

institutions

EU COST Action Nuclear Astrophysics Network

Headquartered at Keele University UK

30 European Countries

Extreme Matter Institute

Computational Network

PI: Edinburgh UK, Victoria Canada, Budapest Hungary,

24 Institutions, 64 scientists

York, UK, Keele, UK

Headquartered at GSI Darmstadt, Germany 13 Institutions, 400 scientists

Japanese Forum for **Nuclear Astrophysics** 16 Institutions 119 Scientists

Supports:

- Joint workshops
- **Schools**
- Visits/Exchanges
- **Online Seminar**
- **Professional Development**
- **Young Researchers Organization**
- Blog!

More at irenaweb.org - Join there

Open Questions Related to Bursts: Is Material Ejected?

- Do bursts eject material?
- Observable features in spectra?
- Contribution to nucleosynthesis (A=92-98 p-nuclei)?

Herrera et al. 2023:

~3% ejected: 60Ni,64Zn,68Ge

Also Weinberg et al. 2002: ~few % ²⁸Si, ⁶⁰Zn, ⁶²Zn Spectral features: Many tentative observations in literature

Recent example: (Wataru et al. 2021)

- "Unusual Emission Structure"
 40h after superburst
- Possibly mix of Fe, Cr, Co ejected in wind and falling back
- Also get red shift → NS compactness

Jordi et al.2013

