

Nuclear Astrophysics at FRIB

Chris Wrede wrede@frib.msu.edu

Nuclei in the Cosmos XVIII, Girona, Spain

19 June 2025

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB) Operations, which is a DOE Office of Science User Facility under Award Number DE-SC0023633.

Introduction

Perspective: active in-house FRIB experimental user; not part of FRIB project team; not part of FRIB operations

- Introduction to FRIB facility
- Highlights from FRIB experiments; criteria:

-primary motivation is nuclear astrophysics

-indicated as "completed" in FRIB public experiments database

-data acquired using radioactive beam

-slide materials shared by spokesperson

B(GT)

0.05

This work

This work

Who we are - FRIB Laboratory

~750 employees, incl. >45 faculty, >150 graduate and ~140 undergraduate students as of Fall 2024

- For decades, NSCL was funded by the U.S. National Science Foundation to operate a user facility for rare isotope research and education in nuclear science, nuclear astrophysics, accelerator physics, and societal applications
- FRIB Project is completed is a national user facility for the U.S. Department of Energy Office of Science with first beam to an experiment in May 2022

Beneficial occupancy 03/2017

Access by Michago State-University

Go Mobile

C. Wrede, NIC XVIII, June 2025 3

FRIB facility layout

Science at FRIB

Properties of nuclei

- Develop a predictive model of nuclei and their interactions
- Determine the limits of elements and isotopes

Astrophysical processes

- Origin of the elements in the cosmos
- Explosive environments: novae, supernovae, X-ray bursts ...
- Properties of neutron stars

Societal applications and benefits

- Isotope harvesting for medicine and a variety of fields
- Surrogate reactions: nuclear security

Tests of fundamental symmetries

 Effects of symmetry violations are amplified in certain nuclei

Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

R. Cyburt et al., Astrophys. J. 830, 55 (2016)

GADGET II local support from U.S. National Science Foundation (2209429) and U.S. Department of Energy (DE-SC0016052, DE-SC0023529, DE-SC0024587)

¹⁵O(α,γ)¹⁹Ne rate for XRBs using GADGET II TPC

- Goal: measure Γ_{α}/Γ of key resonance
- Use ${}^{20}Mg(\beta^+p\alpha)$ decay and GADGET II

R. Mahajan et al., Phys. Rev. C 110, 035807 (2024)

C. Wrede *et al.*, Phys. Rev. C 96, 032801(R) (2017) B. E. Glassman *et al.*, Phys. Rev. C 99, 065801 (2019)

- Commissioned GADGET II on beam line demonstrating sensitivity to $\beta p \alpha$ events using ²¹Mg beam contaminant
- Developed and verified machine learning techniques to identify $\beta p \alpha$ events
- Insufficient ²⁰Mg beam intensity to reach science goals → Run 2 approved (E25058)

T. Wheeler, Ph.D. thesis (Michigan State University, 2024) T. Wheeler *et al.* NIMA 1080, 170659 (2025)

Study of the ⁵⁹Cu(d,n)⁶⁰Zn reaction at FRIB for ⁵⁹Cu(p,γ)⁶⁰Zn

FRIB capable of producing a beam of ⁵⁹Cu with an intensity of ~ 5 x 10⁶ pps @ 40 MeV/u
Bombarded ~ 9 mg/cm² thick CD₂ to populate excited states in ⁶⁰Zn

e21014 spokesperson: Gavin Lotay

Study of the ⁵⁹Cu(*d*,*n*)⁶⁰Zn reaction at FRIB

04

0.6

Temperature [GK]

1.6

- Observation of strong single particle states
- Tight constraints placed on the ${}^{59}Cu(p,\gamma)$ reaction rate
- Determination of proton widths also allows for estimation of ⁵⁹Cu(p,α) reaction
- XRB modelling indicates NiCu cycling may be strong (up to 30%)

The ⁵⁹Cu(p, α) ⁵⁶Ni measurement at FRIB with MUSIC Work done by: Filens Lonez-Saavedra

- ⁵⁹Cu beam at **8.41 MeV/u**
- Average intensity ~9 ×10³ pps (~6 % ⁵⁹Ni contaminant)
- ~55 Hours of Beam
- CH_4 gas at 450 Torr

Eilens Lopez-Saavedra Poster #31

e21016 spokesperson: Melina Avila

Only one run of ~60 minutes

The ⁵⁹Cu(p, α) ⁵⁶Ni Reaction

Event identification in strip 4 and preliminary results

Resonances in ${}^{25}Al+p$ for novae contribution to galactic ²⁶Al

(2001)

Plüschk

25AI,ny)26Si

Obj. Scint

24MeV/u

2x10⁶ pps

>95% purity

Fragmen

beam 25AI

GRETINA&S800

Analysis Line

GRETINA/GRETA

The collaboration

Angle-integrated measurement of the $d({}^{25}\text{Al},n\gamma){}^{26}\text{Si}$ transfer reaction to probe resonance strengths in ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}$ relevant for the production of ${}^{26}\text{Al}$ in novae FRIB experiment with GRETINA - S800

C. Fougères^{1,2}, F. Hammache³, F. de Oliveira Santos⁴, N. de Séréville³, C. Benetti⁵, A. Gade⁵, S. Gillespie⁵, J. Swartz⁵, J. Pereira⁵, D. Weisshaar⁵, S. M. Ali⁵, H. Arora⁵, M. L. Avila¹, L. Balliet⁵, K. Bhatt¹, T. Beck⁵, S. Ahn⁶, J. Chung-Jung⁵, L. Dienis⁴, P. Farris⁵, V. Girard-Alcindor³, S. Giraud⁵, J. Huffman⁵, H. Jacob³, D. Kim⁶, M. Kuich⁵, C. Maher⁵, F. Montes⁵, C. Müller-Gatermann¹, D. Neto⁷, M. Portillo⁵, B. M. Sherrill⁵, O. B. Tarasov⁵, A. Tumino⁸, and R. Zegers⁵
¹Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA
²CEA DAM DIF, F-91297 Arpajon, France
³Laboratoire de Physique des 2 Infinis Irène Joliot-Curie, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
⁴Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
⁵Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824, USA
⁶Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, 34126, Korea
⁷Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA and ⁸INFN-Laboratori Nazionali del Sud, Catania, Italy

Successful ³²Mg,³³Al(d,²He) experiment in inverse kinematics constrains electron-capture (EC) rates that cool neutron-star crusts

- Experiment aimed at constraining EC rates on nuclei in the island of inversion, which contains candidates for Urca cycles that cool the crusts of neutron stars
- (d,²He) reaction at ~100 MeV/u in inverse kinematics is only way to constrain astrophysical EC rates on neutron-rich nuclei (no Q-value limitation), based on wellestablished proportionality between the charge-exchange reaction cross section and Gamow-Teller strength
- ³²Mg,³³Al(d,²He) experiment performed at FRIB using the Active-Target Time Projection Chamber (detection of two protons) and S800 spectrograph (heavy reaction residue)
- Part of larger effort to establish an EC library across the full chart of nuclei for nuclear astrophysics simulations

¹³C,¹⁴O(d,²He) prototype experiment

S. Giraud *et al.*, Phys. Rev. Lett. 130, 232301 (2023) Z. Rahman *et al.*, Phys. Rev. C 110, 024313 (2024)

• Website: <u>https://groups.frib.msu.edu/charge_exchange/weakrates.html</u>

e21018 spokesperson: Remco Zegers

> (d,²He) efforts led by R. Zegers, S. Giraud, Z. Rahman

FRIB e23056: Indirect ⁹⁹Nb(n,γ)¹⁰⁰Nb Constraint for the Astrophysical i-Process

Experimental setup in the S3 vault at FRIB with SuN++ and the S800 Spectrometer

e23056 spokesperson: Andrea Richard

Ru abundances in the i-process for higher (blue) and lower (yellow) $^{99}Nb(n,\gamma)^{100}Nb$ rates

Goal: confirm low [Ru/Mo] abundance ratio as a unique iprocess signature

Method: Indirect neutron-capture constraint of ⁹⁹Nb(n,γ)¹⁰⁰Nb using the ¹⁰⁰Mo(t,³He)¹⁰⁰Nb reaction with SuN++ + S800 spectrometer using the novel *Charge-Exchange Oslo Method*

Preliminary SuN++ CeBr₃ spectrum for ¹⁰⁰Nb

e23084 spokesperson:

Steven Pain

e23084 : ⁷⁵Ga(d,pγ)⁷⁶Ga for ⁷⁵Ga(n,γ) with GODDESS+S800 (i-process)

⁷⁵Ga(n,γ) reaction rate (McKay *et al*, MNRAS **491** (2020))

- critical to understand anomalous abundances observed in proposed i-process site HD94028
- no current experimental constraint; odd-odd ⁷⁶Ga ⇒ large level density

GODDESS: Populate ⁷⁶Ga^{*} via (d,p γ) \rightarrow Measure CN decay \rightarrow Surrogate Reaction Method (SRM) \rightarrow ⁷⁵Ga(n, γ)

- ORRUBA: measure protons $\rightarrow E_x$ of $^{76}Ga^*$
- GRETINA, S800: Detect decay modes of the compound nucleus vs Ex via
 - Discrete γ in Gretina (conventional SRM)
 - Tag n-unbound recoil in S800 \rightarrow 'No-Gamma' SRM \rightarrow direct determination of total n/ γ branching
- Gate on protons and n-bound and n-unbound recoils in S800 \rightarrow distinct Gretina γ -spectra of ⁷⁶Ga*(E_x<S_n) and ⁷⁶Ga*(E_x>S_n) \rightarrow ⁷⁵Ga*+n

e23084 analysis: Sudarsan Balakrishnan

Excitation Energy vs S800 Focal Plane Position

Uncertainties in (α,n) reaction rates produce large variations in calculated abundances in neutrino-driven wind nucleosynthesis

E21048 (Nov 2024):

- Use MUSIC detector to measure ⁸⁵Se(a,xn) in ReA6
- First use of FRIB U beam
- Requested 3000pps ⁸⁵Se with maximum of 40% contamination
- Actual rates: 850pps ⁸⁵Rb (76%) and 270pps ⁸⁵Se (24%)
- FRIB will reschedule experiment for calendar year 2025

J. Bliss et al. J. Phys. G: Nucl. Part. Phys. 44 054003 (2017)

e21048 spokesperson: Wei-Jia Ong

Constraining the astrophysical y process with radioactive ion beams

U.S. Department of Energy Office of Science Michigan State University

Facility for Rare Isotope Beams

FRIB

Constraining the astrophysical y process with radioactive ion beams

Constrained reaction rate eliminates final nuclear uncertainty in ⁷⁴Se production in

A. Tsantiri et al. (2025), in prep

U.S. Department of Energy Office of Science Michigan State University

Radioactive molecules for astrophysics

FRIB e23060 aims to precisely measure the rotational fingerprint of radioactive ²⁶AIF, ²⁶AIO and ³²SiO to enable the sensitive, high-resolution detection of ²⁶AI and ³²Si in space.

Nuclear decay detection ~1x γ -ray per million years for ²⁶Al 2.56×10-3 1.03×10⁻⁴ 1.33×10^{-3} ph.cm⁻².s⁻¹.sr⁻¹

Limited sensitivity, resolution and applicability. (Milky Way, Integral-SPI)

Molecular rotation detection

>10¹⁰ microwave photons per million years for ²⁶AIF/O

Orders of magnitude higher sensitivity and resolution! (SN1987A, ALMA)

e23060 spokesperson: Shane Wilkins

Bouchet et al. ApJ 801 142 (2015), P. Cigan et al., ApJ 886 51 (2019)

11th January 2024

Radioactive atoms and molecules - Shane Wilkins

Facility for Rare Isotope Beams e23060

Given the long half-lives of these isotopes, we can study them off-line using batch-mode ion source at FRIB in combination with newly commissioned Resonance Ionization Spectroscopy.

Can run program entirely in parallel to FRIB main accelerator!

A lot of the isotopes can also be made in a nuclear reactor through neutron capture.

We were granted 480 hours to study ²⁶AlO and ³²SiO for e23060.

Already took a test ²⁶AIF beam during FRIB maintenance period!

Data analysis: Brooke Rickey

Summary and Outlook

- FRIB facility is operational providing RIBs to users since May 2022
- Primary beam power has ramped up from 1 kW to 20 kW since 2022 and continues to increase with ultimate goal of 400 kW
- Intensity and purity of all RIBs continually improving
- Nuclear astrophysics experiments have been acquiring data that is under analysis or approaching publication
- FRIB will produce 80% of all predicted isotopes of elements up to Uranium

Acknowledgements

Thanks to Alex Gade and FRIB experiment spokespersons below for providing material:

E	xperiment #	Spokesperson	Title
e2	21014	Lotay	Constraining the Ni-Cu cycle in X-ray bursts and Core Collapse Supernovae: Spectroscopy of 60Zn
e2	21016	Avila	Direct measurement of the 59 Cu(p, α) 56 Ni reaction
e2	21018	Zegers	Constraining electron-capture rates in and near the N=20 island of inversion
e2	21048	Ong	Constraining Molybdenum and Ruthenium production in neutron-rich neutrino-driven winds
e2	21072	Wrede	Strength of the key ${}^{15}O(\alpha,\gamma){}^{19}Ne$ resonance in X-ray bursts
e2	22505	Kyle (Spyrou/Tsantiri)	Nucleosynthesis of neutron-deficient isotopes in the A=70 region
e2	22510	Grinder	⁸⁰ Ge(d,pγ): Informing weak r-process neutron capture
e2	23037	Fougeres	Angle-integrated measurement of the d($^{25}AI,n\gamma$) ^{26}Si transfer reaction to probe resonance strengths in $^{25}AI(p,g)^{26}Si$ relevant for the production of ^{26}AI in classical novae
e2	23056	Richard	Indirect ⁹⁹ Nb(n, γ) ¹⁰⁰ Nb Constraint for the Astrophysical i-Process
e2	23060	Wilkins	Towards determining the rotational fingerprints of the radioactive molecules ²⁶ AIF and ³² SiO for astronomical studies
e2	23084	Pain	Informing the i process: constraining the As/Ge abundance ratio in a metal poor star via ⁷⁵ Ga(d,pγ) ⁷⁶ Ga

FRIB Public Experiment List:

https://userportal.frib.msu.edu/Pac/Experiments/PublicList

Thank you for your attention!

