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1. Strong Cosmic censorship with A = O



—> Black holes with A = 0O

® Consider Einstein-Maxwell theory with A = 0.

® Reissner-Nordstrom black hole (charged non-rotating BH).
Kerr BH (rotating, uncharged BH)

® Both solutions can be smoothly extended

across a horizon H ' inside the BH.




* Inner horizon is a Cauchy horizon CH| ,*:

a boundary to the region of spacetime in which
physics can be predicted from

initial data prescribed on a surface X.

* Solution beyond the Cauchy horizon
is NOT determined by initial data on .

There are infinitely many ways of smoothly

extending the solution across the Cauchy horizon.




* Interested in the “‘right”* Cauchy horizon CHp*

because early time section of this is expected to be present in a BH formed from collapse.
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=> we have a problem ...

®* Newtonian physics, Maxwell theory, Yang-Mills, Schrodinger equation:

solution determined globally from initial data: can predict future

®* BUT in GR we can smoothly extend a solution

into a region of spacetime which €anNOT be predicted from initial data !

This is a worrying failure of determinism in physics.



® Penrose: Cauchy horizon should be unstable! This would restore predictability!

(& ® Heuristics:
%x :

perturbations entering from outfside the BH experience

an infinite blue-shift at the right Cauchy horizon.
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=> infinite energy densities observed at the CHp*

i ® Suggests there will be a
large backreaction at the Cauchy horizon,

perhaps causing it to be replaced by a singularity



=> Strong cosmic censorship conjecture (Penrose 70's)

[aka Very SCC or cO version]

e Consider complete, asymptotically flat initial data for the Einstein-Maxwell eqns.
Then generically (generic initial data) the resulting
solution cannot be extended (continuously) across a Cauchy horizon

( the maximal Cauchy development of a two-ended X is inextendible)

® If correct, this conjecture restores predictability
without invoking poorly understood physics

(e.g. backreaction of quantum effects).

® NOT related to Penrose’s weak cosmic censorship conjecture:

“naked singularities dont form from collapse”



- Evidence for the conjecture: linear

® Consider linear perturbations of RN BHs:

massless scalar (or linearized gravito-electromagnetic perturbations).

® Take initial data compactly supported on 2.
® Perturbations outside BH exhibit power-law decay (“late time tails”) [Price 72]
® This is slow enough to trigger the blue-shift instability at the Cauchy horizon

® Inverse-power law tail of grav. collapse provides initial data for internal problem
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- Evidence for the conjecture: linear

® Result:
— gradient of scalar diverges at Cauchy horizon.

— Energy density measured by observer crossing CH is divergent:

p =1, u"u”

=> Expect large backreaction on metric.

[ McNamara (1978) Chandrasekhar & Hartle (1982) ]



- Evidence for the conjecture: nonlinear

[ Poisson-Israel (1990), Ori (1991) ]

“Null dust” model (charged Vaidya with infalling null dust):

® Backreaction causes the

invariant "Hawking mass” to diverge at the Cauchy horizon (“mass inflation®).

=> Energy density p=Tu u“u® measured by free-falling observer also diverges.
=> Cauchy horizon becomes singular, in agreement with conjecture.

®* However: the metric can be continuously extended across Cauchy horizon

(so the Cauchy horizon can still be defined). NOT Whglvlaybe)

=> the singularity at CHy* is null at least at “early time”.



—> Rigorous results: RN

[ Dafermos (2003, 2012), Luk & Oh (2017) ]

® Spherically symmetric Einstein-Maxwell coupled to massless (neutral) scalar field &
Consider nonlinear perturbations of RN solution by ®.

® Take compactly supported initial data for ® on two-ended >.
Then the (nonlinear) solution can be continuously & globally

extended across a Cauchy horizon.

® Generically, if 0y®[3+ = Cv™" (p>1), the extension is not €2

at the Cauchy horizon.

=> Cauchy horizon is a weak null singularity.

* If we only specify data for © in one asymptotically flat region then above

statements apply to the “early time” part of the “right” Cauchy horizon CH,*.

* Effectively proves "mass inflation”



- Rigorous results: Kerr

Kerr: [ Dafermos & Luk (2017)]

if (nonlinear) gravitational perturbations decay along the H ¥

at the expected inverse power-law rate

then the perturbed solution can be continuously extended

across a Cauchy horizon at early time.



—> Crossing the Cauchy horizon

® Summary so far:

a perturbed RN BH solution be can continuously extended across a CH

(i.e. Penrose’s CO version of SCC is false )

but the extension is not in C2, i.e., the CH is a curvature singularity.

=> Great! Predictability is restored!

® Not so fast! Ori (1991) ... a twist in the story:

— Consider an (extended) observer approaching the CH.

The total tidal distortion felt by this observer can remain bounded!
— So what happens to such an observer?

— To answer this question, one must specify:

what is the matter field content of the observer & their EOM.

If these EOM still “make sense” at the CH then we still have a problem with
predictability! (i.e. CH has singularity but observer survives its crossing)



—> Weak solutions

® KEY question: What it the minimal regularity required to make sense of EOM?

® Can make sense of solutions less regular than C2 as w

eak solutions.

Example: shocks in compressible perfect fluid.

— Scalar field &: ® = 0.
— Treat this as a 15t order perturbation, sourcing a 2™ order metric pert hffy) One has:

Well defined if h,(fy) twice continuously differentiable (of class C?) and ® of class C1.

— Multiply (1) by a smooth, compactly supported, symmetric tensor, ¥** & integrate by parts:

/ d*z\/—g (—Vhf?,)vw/ - 87T¢WTW> = (2)

Keypoint: Can have O, hffy) obeying (2) (if C1) but, if hg,/) not C?, (1) is not obeyed

o If (2) is obeyed for any Y*¥ =  we have a weak solution of original Einstein eqn (1)




—> Weak solutions

/ d*z\/—g (—Vhf?,)vw/ - 87T¢WTW> = (2)

Keypoint: Can have &, hfy) obeying (2) (if C1) but, if hg,/) not C? (1) is not obeyed

o If (2) is obeyed for any Y*¥ =  we have a weak solution of original Einstein eqn (1)

e EOM (2) “makes sense”, if terms involving ® are finite

= require that ® belongs to Sobolev space Hﬁ)c : D is Squarer? I.Htegrab]e.
space of functions ® s.t. for any smooth compactly supported function 2,
(9% + 9,80, d) is integrable (where ® = )®).



— Christodoulou’'s formulation of SCC

® Criterion for weak solutions of the full nonlinear vacuum Einstein equation:

\

A weak solution of the Einstein equation [T[®] = T[(RM)2, (0 1)?]

must have locally square integrable (H!,,.) Christoffel symbols in some chart.

® Christodoulou’s version of the SCC conjecture (2009):

generically, it is not possible to extend the maximal Cauchy development

across the Cauchy Horizon

as a weak metric solution of EOM ( => also not €2 )

® If correct then generically there is no way of extending beyond the CH
in such a way that (at least the weak version of) EOM are satisfied there

=> predictability restored!

® This version of the conjecture is believed to be true with A = 0.



- Summary so far (A = 0)

e Different SCC versions distinguished by smoothness level required at Cauchy CHy

® In order of decreasing strength:

— €O version (Very SCC): generically no continuous extension exists across CH
=> singularity exists before Cauchy horizon forms.

"
\'4

— Christodoulou version: generically no weak extension (with Hljoc Christoffel symb.)

=> Cauchy surface is a weak null singularity.

"
\'4

— C2 version: generically no €2 extension.

® For Einstein-Maxwell(-massless scalar) theory, with A = 0:

— €0 version is false [promc by Christodoulou; Dafermos-Luk]

— Christodoulou version believed to be true [pr‘oof for Einstein-scalar: Dafermos-Rothman; Luk—Oh]

— Strong evidence that C2 version is true.



2. Strong Cosmic censorship with A > 0



- The cosmological constant: A < O (AdS)

® A < O: perturbations outside an AdSs BH decay very slowly (~ 1/(log t)¥#),

i.e. more slowly than power-law decay of A=0 [ Holzegel-Smulevici (2013) ].

® This is likely to strengthen the instability ‘«%_

X
of the Cauchy horizon.

=> Christodoulou version of SCC expected to be true.

X

®But (surprisingly) CO version still false [ Kehle (2018) ]



- The cosmological constant A > O (de Sitter)

Onwards, assume A > 0: we now have a cosmological horizon C*.~.




— Blue vs red shift competition

® Perturbations entering Ht at late time have fo climb out of the potential well
associated with the cosmological horizon, suffering a red-shift.

® This competes with blue-shift at Cauchy horizon: Which effect wins ?
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— Mellor-Moss (1990)

® Perturbations of Reissner-Nordstrom-de Sitter (RNdS) decay very fastly (exp)!

® They argued that late time decay of linear perturbations outside the BH is
determined by the slowest decaying quasinormal mode (damped oscillation).

® Quasinormal mode: solution with time dependence e~ W7 smooth on future event

horizon H* and future cosmological horizon C*. w is complex with Im(w) < O.

® Define spectral gap @ to be the minimum value of -Im(w)

So generic perturbations decay exponentially in time as e ¢ ¢,

(in contrast with power-law decay for A =0)

®Does this decay trigger the blue-shift instability of Cauchy horizon CHyt ?



® Introduce double null coordinates (U, V) so that Cauchy horizon is at V = 0O

with BH interior in V < O. u V V4

® MM showed that near Cauchy horizon, NHE
generic linear perturbations are proportional to (-V)® with

@
B=—
K_

-

K- is the (positive) surface gravity of the Cauchy horizon

® So gradient of perturbation 9 ®~ (—V)ﬁ'1 blows up at Cauchy horizon if B«1

® MM showed (numerically) that most RNdS BHs have p«l.

=> backreaction causes curvature fo blow up at the Cauchy horizon

=> good, C2 version of SCC is obeyed.

® But MM also claimed that near-extremal RN holes have 8 > 1.

If correct, this would entail a violation of the C2 version of SCC |!!




— Confusion

o[ Brady, Moss & Myers “"Cosmic censorship: as strong as ever” (1998)]:
argued that the MM analysis overlooks

the effect of outgoing radiation inside the hole.

®* BMM claimed that backscattering of such radiation

would always have a large effect at the Cauchy horizon,

restoring the C2 version of SCC for A > 0.

® It turns out that the BMM argument has a problem:

we showed that their initial perturbation

is not smooth (not even Cl) at the event horizon !

[ OD, Reall, Santos 1808.02895 ]

However, main conclusions correct!!! —>see rough Dafermos & Shlapentokh-Rothman (2018) later



- Recent developments

*[ Hintz & Vasy (2015) ]

For smooth initial perturbations,
HV have (mathematically) proved that the behaviour of linear perturbations
at the Cauchy horizon

is indeed determined by quasinormal modes,

as originally claimed by Mellor-Moss.

® Therefore:

— C2 version respected iff B <1

— If nonlinearities behave as expected then
Christodoulou version of SCC is respected iff 8 < 1/2

is B < /22 L \ater clide )
is



CH,*
e Origin of critical § = —h],:(_w) =1 ?

— Near CH%, QNM is sum of two independent solutions (u: outgoing EF time):

)

d(1) — e—iwuye(e)éile)(r | »
- T—)Zw/m_ Rc(ue)("“)

®, =AdY + BO®  with .
’CHE (I)(Q) — e—zwun(e) (7”
| }?&’2)(7“_) # 0 and smooth ]
Im(w) <0 = ®@(r_)=0 BUT ®® is not smooth at r = r_.
NO reason for B =0 = regularity of QNM is determined by the non-smooth ®(?).

— What is the condition for ®® to be locally square integrable?

2 ~ (r—r ) with p=iw/k_. = 0,8@ ~ (r —r_)P~!
which is square integrable ([ (GTCI)(2))2 finite) iff 2(5 — 1) > —1 where 5 = Re(p) .

— QNM € Hl at CH} iff (= —IIE# > % — Christodoulou’s SCC may be violated



® Therefore:
— if 3 a QNM with B< 1/2 => @ cannot be extended across CHy*t in Hl| . => SCC ok

— if all QNM have B > 1/2 => SCC may be violated

® [Cardoso, Costa, Destounis, Hintz & Jansen (2017)]:

careful numerical study of massless scalar field QNMs of RNdS.

— Calculate slowest-decaying QNMs to determine f3

— Found that near-extremal RNdS holes have 1/2 < B < 1

=> S0 massless scalar perturbations

violate the Christodoulou version but not the C2 version of SCC.

® Very recently: numerical confirmation that this is true with backreaction, in
spherical symmetry. [ Cardoso et al (2018) ]



- Our work: RNdS [ OD, Reall, Santos 1808.02895 ]

® We studied linearized (coupled) gravitational-electromagnetic perturb of RNdS

® We found that near-extremal RNdS BHs always have 8 > 2

® Hence, in pure Einstein-Maxwell theory, not only is the

Christodoulou’s version of SCC violated but so is the C2 version !!!

® In fact, generic perturbations are CT at the Cauchy horizon,
where 7 can be made arbitrarily large

by making the BH sufficiently near-extremal & sufficiently large (in units of A)

® So SCC is very badly violated in Einstein-Maxwell theory with A > 0 !!!



- Our work: Adding charged matter to RNdS

® In Einstein-Maxwell(-uncharged scalar) theory,

it is impossible to form a RNdS black hole: no charged matter.

® So add a charged scalar field. -

® Our results:

0.8-
[OD, Reall, Santos, 1808.04832 |
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B is very close to 1/2 BUT oscillates around 1/2 as BH approaches extremality

for “physical” (large) values of charge,

=> Christodoulou’s version of SCC is violated (8 > 1/2).

® [see also Hod (2018), Cardoso et al (2018)]: B > 1/2 not seen
because not close enough to extremality



— Our work: Kerr dS

® A > O is our Universe. But near-extremal RNdS black holes are unphysical:

highly charged BHs dont exist in Nature!

® RN is often regarded as a toy model for Kerr within spherical symmetry.
® So is there a violation of SCC for near-extremal Kerr-dS ¢

* We studied QNMs with large angular momentum, i.e., ® o eimy, |m| > 1,

both for scalar field and gravitational perturbations.

® In this limit, the modes can be calculated using geometric optics,

i.e., looking at null geodesics.

* Ingoing/outgoing boundary conditions at the event/cosmological horizons

< null geodesics which do not cross any horizons to the past.



—> Our work: Kerr dS [ OD, Eperon, Reall, Santos, 1801.09694 |

® The photon sphere consists of null geodesics which remain forever at fixed r.
® These are unstable trajectories:
the decay rate when perturbed fixes the imaginary part of associated QNM.

® From such trajectories we can place an upper bound on B: B < 1/2

® Thus Christodoulou’s version of SCC is respected by Kerr-ds !l!

® So when A > 0, Christodoulous SCC is respected in pure Einstein gravity

BUT violated in Einstein-Maxwell theory.
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- Taking the rough with the smooth

® How do we rescue SCC in Einstein-Maxwell theory with A > 0 ?

® So far we've considered perturbations arising from smooth initial data.

® [Dafermos & Shlapentokh-Rothman (2018)]: consider rough initial data.

=> Late time behaviour is no longer dictated by quasinormal modes.

® The smoothness of the solution (in the sense of Sobolev spaces)
generically gets worse at the Cauchy horizon.

(In fact this is precisely what happens in the earlier argument of Brady, Moss, Myers!)
[ OD, Reall, Santos 1808.02895 ]

® A generic perturbation arising from
initial data with the minimum acceptable level of smoothness will not have

this minimum acceptable level of smoothness at the Cauchy horizon.



3. Quantum effects



- Quantum effects: theory with charged particles

® A ¢ O: Christodoulou’ s version of SCC appears to be true

so we do not need tfo invoke quantum effects to restore predictability.
e A > 0: do quantum effects help?

® If theory contains charged particles: RNdS BH can radiate them & lose its charge

e This does not depend on the mass of the particles:

redshifted away at cosmological horizon!

® So Hawking radiation will drive BH away from extremality => SCC is saved.



- Quantum effects: theory with NO charged particles

® Now consider RNdS in pure Einstein-Maxwell theory (no charged matter).

®* We have Hawking radiation of photons and gravitons

from both the BH horizon and the cosmological horizon.

® This will drive a RNdS BH away from extremality towards a “lukewarm” solution

( for which the two horizons have equal temperatures )

® BUT such BHs are still close enough to extremality

to violate Christodoulou’s version of SCC (but not C2 version).



- Quantum effects: theory with NO charged particles

® Expect the quantum state of the fields to approach

the Hartle-Hawking (thermal) state at late time.

® It would be inferesting to calculate (Tyy> in this HH state
near the Cauchy horizon of a lukewarm BH.

® Does (Tuy> diverge at the Cauchy horizon sufficiently rapidly

to ensure that Gy, = 8m(Tuy) cannot be satisfied there, even weakly?

® If so then predictability would be enforced by vacuum polarization.
® Calculations in a 2d toy model show that
(Tuv) does diverge at a Cauchy horizon. [Birrell & Davies 1977]

— The 4d case is much harder!

(Tuy> has only been calculated outside a lukewarm RNdS black hole.

[ Winstanley & Young (2007), Breen & Ottewill (2010) ]



- Summary

® Strong cosmic censorship: physics should be predictable from initial data!

® Very likely to be true for A ¢ 0.
True for pure Einstein theory with A > 0.

® Badly (very! not even C2) violated in pure Einstein-Maxwell theory with A > O

unless we allow rough initial dafta.

® Opportunity for quantum effects to save the day?

® Further reading:

— OD, Felicity Eperon, Harvey Reall, Jorge Santos
1801.09694 (PRD) & 1808.02895 (JHEP) & 1808.04832 (CQG)
— Mihalis Dafermos’ website



