

Based on:

OD, Felicity Eperon, Harvey Reall, Jorge Santos 1801.09694 (PRD) & 1808.02895 (JHEP) & 1808.04832 (CQG)

The vacuum of the Universe IV, Barcelona June 2019

- 1. Strong Cosmic censorship with Λ = 0
- 2. Strong Cosmic censorship with Λ > 0
- 3. Quantum effects

1. Strong Cosmic censorship with Λ = 0

- \rightarrow Black holes with $\Lambda = 0$
- Consider Einstein-Maxwell theory with $\Lambda = 0$.
- Reissner-Nordström black hole (charged non-rotating BH).
 Kerr BH (rotating, uncharged BH)

• Inner horizon is a **Cauchy horizon** $CH_{L,R}^{+}$:

a boundary to the region of spacetime in which
physics can be predicted from
initial data prescribed on a surface Σ.

Solution beyond the Cauchy horizon
 is <u>NOT</u> determined by initial data on Σ.

There are **infinitely** many **ways** of smoothly **extending** the solution **across** the **Cauchy** horizon.

• Interested in the ``*right*`` Cauchy horizon CH_R^+

because early time section of this is expected to be present in a BH formed from collapse.

 \rightarrow we have a problem ...

• Newtonian physics, Maxwell theory, Yang-Mills, Schrödinger equation: solution determined globally from initial data: can predict future

- <u>BUT</u> in GR we can smoothly extend a solution into a region of spacetime which can<u>NOT</u> be predicted from initial data !
 - This is a worrying failure of determinism in physics.

• Penrose: Cauchy horizon should be unstable! This would restore predictability!

• Heuristics:

U

А

В

 \sim

perturbations entering from outside the BH experience an **infinite blue-shift** at the right Cauchy horizon.

$$\frac{\nu_{\rm B}}{\nu_{\rm A}} = \frac{\Delta \tau_{\rm A}}{\Delta \tau_{\rm B}} \sim e^{\kappa_{-}v} \quad \text{as} \quad r \to r_{-}$$
$$v \to \infty$$

 $v = t + r_*$: ingoing Eddington-Finkelstein time

=> infinite energy densities observed at the CHR+

• Suggests there will be a

large backreaction at the Cauchy horizon,

perhaps causing it to be replaced by a singularity

→ Strong cosmic censorship conjecture (Penrose 70's)

[aka Very SCC or C⁰ version]

Consider complete, asymptotically flat initial data for the Einstein-Maxwell eqns.
 Then generically (generic initial data) the resulting
 solution cannot be extended (continuously) across a Cauchy horizon

(the maximal Cauchy development of a two-ended Σ is inextendible)

 If correct, this conjecture restores predictability without invoking poorly understood physics (e.g. backreaction of quantum effects).

• <u>NOT</u> related to Penrose's **weak cosmic censorship** conjecture: "naked singularities don't form from collapse"

→ Evidence for the conjecture: linear

• Consider linear perturbations of RN BHs:

→ Evidence for the conjecture: linear

- Consider **linear perturbations of RN BHs:** massless scalar (or linearized gravito-electromagnetic perturbations).
- Take initial data compactly supported on Σ .
- Perturbations outside BH exhibit power-law decay ("late time tails") [Price 72]
- This is slow enough to trigger the blue-shift instability at the Cauchy horizon
- Inverse-power law tail of grav. collapse provides initial data for internal problem

• Result:

- gradient of scalar diverges at Cauchy horizon.
- Energy density measured by observer crossing CH is divergent:

$$\rho = T_{\mu\nu} u^{\mu} u^{\nu}$$

=> Expect large backreaction on metric.

[McNamara (1978) Chandrasekhar & Hartle (1982)]

→ Evidence for the conjecture: <u>non</u>linear

[Poisson-Israel (1990), Ori (1991)]

"Null dust" model (charged Vaidya with infalling null dust):

Backreaction causes the

invariant "Hawking mass" to diverge at the Cauchy horizon ("mass inflation").

- => Energy density $\rho = T_{ab} u^a u^b$ measured by free-falling observer also diverges.
- => Cauchy horizon becomes singular, in agreement with conjecture.
- However: the metric can be <u>continuously extended</u> across Cauchy horizon

(so the Cauchy horizon can still be defined).

(Maybe) NOT what Penrose had in mind !

=> the singularity at CH_R^+ is null at least at "early time".

→ Rigorous results: RN

[Dafermos (2003, 2012), Luk & Oh (2017)]

• Spherically symmetric Einstein-Maxwell coupled to massless (neutral) scalar field Φ Consider **nonlinear** perturbations of RN solution by Φ .

Σ

• Take compactly supported initial data for Φ on **two-ended** Σ .

Then the (nonlinear) solution can be continuously & globally

extended across a Cauchy horizon.

- Generically, if $|\partial_v \Phi|_{\mathcal{H}^+} \ge Cv^{-p}$ (p>1), the extension is **not C2** at the Cauchy horizon.
 - => Cauchy horizon is a weak null singularity.
- If we only specify data for Φ in one asymptotically flat region then above statements apply to the "early time" part of the "right" Cauchy horizon CH_R^+ .
- Effectively proves "mass inflation"

→ Rigorous results: Kerr

Kerr: [Dafermos & Luk (2017)]

<u>if</u> (nonlinear) gravitational perturbations decay along the H^+

at the expected inverse power-law rate

then the perturbed solution can be continuously extended

across a Cauchy horizon at early time.

→ Crossing the Cauchy horizon

• Summary so far:

a perturbed RN BH solution be can continuously extended across a CH

(i.e. Penrose's C^0 version of SCC is <u>false</u>)

but the extension is not in C², i.e., the CH is a curvature singularity.

- => Great! Predictability is restored!
- Not so fast! Ori (1991) ... a twist in the story:
- Consider an (extended) observer approaching the CH.

The total tidal distortion felt by this observer can remain bounded!

- So what happens to such an observer?
- To answer this question, one must **specify**:

what is the matter field content of the observer & their EOM.

If these EOM still "make sense" at the CH then we still have a problem with predictability! (i.e. CH has singularity but observer survives its crossing)

Weak solutions

- KEY question: What it the **minimal regularity** required to **make sense of EOM?**
- Can make sense of solutions less regular than C² as <u>weak</u> solutions.

Example: **shocks** in compressible perfect fluid.

- Scalar field Φ : $\Box \Phi = 0$.
- Treat this as a 1st order perturbation, sourcing a 2nd order metric pert $h_{\mu\nu}^{(2)}$. One has:

$$\mathcal{L} h_{\mu\nu}^{(2)} = 8\pi T_{\mu\nu}[\Phi] \sim \nabla^2 h_{\mu\nu}^{(2)} = 8\pi T_{\mu\nu}[\Phi].$$
 (1)

Well defined if $h_{\mu\nu}^{(2)}$ twice continuously differentiable (of class C^2) and Φ of class C^1 . – Multiply (1) by a smooth, compactly supported, symmetric tensor, $\psi^{\mu\nu}$ & integrate by parts: $\int d^4x \sqrt{-g} \left(-\nabla h_{\mu\nu}^{(2)} \nabla \psi^{\mu\nu} - 8\pi \psi^{\mu\nu} T_{\mu\nu} \right) = 0 \qquad (2)$

<u>Keypoint:</u> Can have Φ , $h_{\mu\nu}^{(2)}$ obeying (2) (if C^1) but, if $h_{\mu\nu}^{(2)}$ <u>not</u> C^2 , (1) is <u>not</u> obeyed

• If (2) is obeyed for any $\psi^{\mu\nu} \implies$ we have a <u>weak solution</u> of original Einstein eqn (1)

-> Weak solutions

- KEY question: What it the minimal regularity required to make sense of EOM?
- Can make sense of solutions less regular than C² as <u>weak</u> solutions.
- Scalar field Φ : $\Box \Phi = 0$.
- Treat this as a 1st order perturbation, sourcing a 2nd order metric pert $h_{\mu\nu}^{(2)}$. One has:

$$\mathcal{L} h_{\mu\nu}^{(2)} = 8\pi T_{\mu\nu}[\Phi] \sim \nabla^2 h_{\mu\nu}^{(2)} = 8\pi T_{\mu\nu}[\Phi].$$
 (1)

Well defined if $h_{\mu\nu}^{(2)}$ twice continuously differentiable (of class C^2) and Φ of class C^1 . - Multiply (1) by a smooth, compactly supported, symmetric tensor, $\psi^{\mu\nu}$ & integrate by parts: ſ

$$\int d^4x \sqrt{-g} \left(-\nabla h^{(2)}_{\mu\nu} \nabla \psi^{\mu\nu} - 8\pi \psi^{\mu\nu} T_{\mu\nu} \right) = 0$$
 (2)

Keypoint: Can have Φ , $h_{\mu\nu}^{(2)}$ obeying (2) (if C^1) but, if $h_{\mu\nu}^{(2)}$ <u>not</u> C^2 , (1) is <u>not</u> obeyed

- If (2) is obeyed for any $\psi^{\mu\nu} \implies$ we have a **weak solution** of **original** Einstein eqn (1)
- EOM (2) "makes sense", if terms involving Φ are finite
 - ${{locally}\over{\psi\Phi}} {square} {integrable:} \ \psi \Phi {is square} {integrable}$ \Rightarrow require that Φ belongs to Sobolev space H^1_{loc} : space of functions Φ s.t. for any smooth compactly supported function ψ , $(\hat{\Phi}^2 + \partial_\mu \hat{\Phi} \partial_\mu \hat{\Phi})$ is integrable (where $\hat{\Phi} \equiv \psi \Phi$).

-> Christodoulou's formulation of SCC

• Criterion for weak solutions of the full nonlinear vacuum Einstein equation:

A weak solution of the Einstein equation

must have locally square integrable (H¹loc) Christoffel symbols in some chart.

• Christodoulou's version of the SCC conjecture (2009):

generically, it is <u>not</u> possible to **extend** the maximal Cauchy development across the Cauchy Horizon

as a weak metric solution of EOM (=> also not C^2)

 $[T[\Phi] \to T[(h^{(1)})^2, (\partial h^{(1)})^2]$

- If correct then generically there is no way of extending beyond the CH in such a way that (at least the weak version of) EOM are satisfied there
 predictability restored!
- This version of the conjecture is **believed** to be **true** with $\Lambda = 0$.

\rightarrow Summary so far ($\Lambda = 0$)

- Different SCC versions distinguished by smoothness level required at Cauchy CH_R
- In order of **decreasing strength**:
 - C⁰ version (Very SCC): generically <u>no</u> continuous extension exists across CH
 => singularity exists before Cauchy horizon forms.
 - Christodoulou version: generically <u>no</u> weak extension (with H¹loc Christoffel symb.)
 => Cauchy surface is a weak null singularity.
 - C^2 version: generically <u>no</u> C^2 extension.
- For Einstein-Maxwell(-massless scalar) theory, with $\Lambda = 0$:
- C⁰ version is false [proof by Christodoulou; Dafermos-Luk]
- Christodoulou version believed to be true [proof for Einstein-scalar: Dafermos-Rothman; Luk-Oh]
- Strong evidence that C² version is true.

2. Strong Cosmic censorship with Λ > 0

• <u>But</u> (surprisingly) C⁰ version still false [Kehle (2018)]

\rightarrow The cosmological constant $\Lambda > 0$ (de Sitter)

Onwards, assume $\Lambda > 0$: we now have a cosmological horizon $C^+, -$.

→ Blue vs red shift competition

- Perturbations entering H+ at late time have to climb out of the potential well associated with the cosmological horizon, suffering a red-shift.
- This competes with blue-shift at Cauchy horizon: which effect wins ?

→ Mellor-Moss (1990)

- Perturbations of Reissner-Nordstrom-de Sitter (RNdS) decay very fastly (exp)!
- They argued that late time decay of linear perturbations outside the BH is determined by the <u>slowest</u> <u>decaying</u> <u>quasinormal</u> <u>mode</u> (damped oscillation).
- Quasinormal mode: solution with time dependence $e^{-i \omega t}$ smooth on future event horizon H+ and future cosmological horizon C+. ω is complex with Im(ω) < 0.
- Define spectral gap α to be the minimum value of $-\text{Im}(\omega)$ So generic perturbations decay exponentially in time as $e^{-\alpha t}$,

(in contrast with power-law decay for Λ = 0)

• Does this decay trigger the blue-shift instability of Cauchy horizon CH_R^+ ?

- Introduce double null coordinates (U, V) so that Cauchy horizon is at V = O with **BH interior** in **V** < **O**. CH_R^+
- MM showed that near Cauchy horizon,

generic linear perturbations are proportional to $(-V)^{\beta}$ with

 κ_{-} is the (positive) surface gravity of the Cauchy horizon

• So gradient of perturbation $\partial \Phi \sim (-V)^{\beta-1}$ blows up at Cauchy horizon if $\beta < 1$

 $\beta = \frac{\alpha}{\kappa_{-}}$

- MM showed (numerically) that most RNdS BHs have $\beta < 1$.
 - => backreaction causes curvature to blow up at the Cauchy horizon => good, C² version of SCC is obeyed.
- But MM also claimed that **near-extremal** RN holes have $\beta > 1$.
 - If correct, this would entail a violation of the C² version of SCC

→ Confusion

- [Brady, Moss & Myers "Cosmic censorship: as strong as ever" (1998)]: argued that the MM analysis overlooks the effect of outgoing radiation inside the hole.
- BMM <u>claimed</u> that **backscattering** of such radiation would always have a large effect at the Cauchy horizon, restoring the C² version of SCC for $\Lambda > 0$.
- It turns out that the BMM argument has a problem: we showed that their initial perturbation

is not smooth (not even C1) at the event horizon !

[OD, Reall, Santos 1808.02895]

However, main conclusions correct !!! -> see rough Dafermos & Shlapentokh-Rothman (2018) later

→ Recent developments

• [Hintz & Vasy (2015)]

For smooth initial perturbations,

HV have (mathematically) proved that the **behaviour** of **linear perturbations**

at the Cauchy horizon

is indeed determined by quasinormal modes,

as originally claimed by Mellor-Moss.

• Therefore:

- C^2 version respected iff $\beta < 1$
- If nonlinearities behave as expected then Christodoulou version of SCC is respected iff $\beta < 1/2$

is
$$\beta < 1/2$$
? [later slide]

 $U \sim V$ CH_R^+

• Origin of critical $\beta \equiv -\frac{\text{Im}(\omega)}{\kappa_{-}} = \frac{1}{2}$?

- Near \mathcal{CH}_R^+ , **QNM** is **sum** of **two independent** solutions (*u*: outgoing EF time):

$$\Phi|_{\mathcal{CH}_{R}^{+}} = A \Phi^{(1)} + B \Phi^{(2)} \quad \text{with} \begin{cases} \Phi^{(1)} = e^{-i\omega u} Y_{\ell}(\theta) \hat{R}_{\omega\ell}^{(1)}(r) \\ \Phi^{(2)} = e^{-i\omega u} Y_{\ell}(\theta) (r - r_{-})^{i\omega/\kappa_{-}} \hat{R}_{\omega\ell}^{(2)}(r) \\ & \left[\hat{R}_{\omega\ell}^{(1,2)}(r_{-}) \neq 0 \text{ and smooth} \right] \end{cases}$$

 $\operatorname{Im}(\omega) < 0 \implies \Phi^{(2)}(r_{-}) = 0 \quad \underline{\operatorname{BUT}} \quad \Phi^{(2)} \text{ is } \underline{\operatorname{not}} \quad \text{smooth at } r = r_{-}.$

NO reason for $B = 0 \implies$ regularity of QNM is determined by the <u>non-smooth</u> $\Phi^{(2)}$.

- What is the condition for $\Phi^{(2)}$ to be locally square integrable?

 $\Phi^{(2)} \sim (r - r_{-})^{p}$ with $p = i\omega/\kappa_{-} \Rightarrow \partial_{r}\Phi^{(2)} \sim (r - r_{-})^{p-1}$

which is square integrable $\left(\int \left(\partial_r \Phi^{(2)}\right)^2$ finite) iff $2(\beta - 1) > -1$ where $\beta = \operatorname{Re}(p)$.

 \implies **QNM** $\in H^1_{\text{loc}}$ at \mathcal{CH}^+_R iff $\beta \equiv -\frac{\text{Im}(\omega)}{\kappa_-} > \frac{1}{2} \longrightarrow$ Christodoulou's SCC may be violated

- Therefore:
 - if $\exists \underline{a} \text{ QNM}$ with $\beta < 1/2 \Rightarrow \Phi$ cannot be extended across CH_R^+ in $H^1_{loc} \Rightarrow SCC$ ok
 - if <u>all</u> QNM have $\beta > 1/2 \Rightarrow$ SCC may be violated

• [Cardoso, Costa, Destounis, Hintz & Jansen (2017)]:

careful numerical study of massless scalar field QNMs of RNdS.

- Calculate slowest-decaying QNMs to determine β
- Found that near-extremal RNdS holes have $1/2 < \beta < 1$
 - => so massless scalar perturbations

violate the Christodoulou version but not the C² version of SCC.

• Very recently: numerical confirmation that this is true with **backreaction**, in **spherical** symmetry. [Cardoso et al (2018)]

→ Our work: RNdS

[OD, Reall, Santos 1808.02895]

- We studied linearized (coupled) gravitational-electromagnetic perturb of RNdS
- We found that **near-extremal** RNdS BHs **always** have $\beta > 2$
- Hence, in **pure** Einstein-Maxwell theory, **not only** is the

Christodoulou's version of SCC violated but <u>so is</u> the C² version !!!

In fact, generic perturbations are C^r at the Cauchy horizon,
 where r can be made arbitrarily large
 by making the BH sufficiently near-extremal & sufficiently large (in units of Λ)

• So SCC is <u>very</u> <u>badly</u> <u>violated</u> in **Einstein-Maxwell** theory with $\Lambda > 0$!!!

→ Our work: Adding charged matter to RNdS

• In Einstein-Maxwell(-uncharged scalar) theory,

it is impossible to form a RNdS black hole: no charged matter.

=> Christodoulou's version of SCC is violated (β > 1/2). \tilde{q}

• [see also Hod (2018), Cardoso et al (2018)]: $\stackrel{\mu}{\beta} = \stackrel{0}{\Rightarrow} 1/2$ not seen

because not close enough to extremality

→ Our work: Kerr dS

- Λ > 0 is our Universe. But near-extremal RNdS black holes are <u>unphysical</u>: highly charged BHs don't exist in Nature!
- RN is often regarded as a toy model for Kerr within spherical symmetry.
- So is there a violation of SCC for near-extremal Kerr-dS ?
- We studied QNMs with large angular momentum, i.e., $\Phi \propto e^{im\varphi}$, $|m| \gg 1$,

both for scalar field and gravitational perturbations.

- In this limit, the modes can be calculated using geometric optics, i.e., looking at null geodesics.
- Ingoing/outgoing boundary conditions at the event/cosmological horizons

 mull geodesics which do not cross any horizons to the past.

→ Our work: Kerr dS [OD, Eperon, Reall, Santos, 1801.09694]

- The photon sphere consists of null geodesics which remain forever at fixed r.
- These are **unstable trajectories**:

the decay rate when perturbed fixes the imaginary part of associated QNM.

- From such trajectories we can place an upper bound on β : $\beta < 1/2$
- Thus Christodoulou's version of SCC is <u>respected</u> by Kerr-dS !!!
- So when $\Lambda > 0$, Christodoulou's SCC is <u>respected</u> in **pure Einstein** gravity

<u>BUT</u> violated in Einstein-Maxwell theory.

→ Taking the rough with the smooth

- How do we rescue SCC in Einstein-Maxwell theory with $\Lambda > 0$?
- So far we've considered perturbations arising from **<u>smooth</u>** initial data.
- [Dafermos & Shlapentokh-Rothman (2018)]: consider rough initial data.
 - => Late time behaviour is <u>no</u> longer dictated by quasinormal modes.
- The smoothness of the solution (in the sense of Sobolev spaces) generically gets worse at the Cauchy horizon.

(In fact this is precisely what **happens** in the **earlier** argument of **Brady, Moss, Myers**!) [OD, Reall, Santos 1808.02895]

• A generic perturbation arising from

initial data with the minimum acceptable level of smoothness will <u>not</u> have <u>this minimum acceptable level</u> of smoothness at the Cauchy horizon.

3. Quantum effects

→ Quantum effects: theory with charged particles

• $\Lambda \leq 0$: Christodoulou's version of SCC appears to be true

so we do **not** need to invoke quantum effects to restore predictability.

- Λ > 0: do quantum effects help?
- If theory contains charged particles: RNdS BH can radiate them & lose its charge
- This does not depend on the mass of the particles: redshifted away at cosmological horizon!
- So Hawking radiation will drive BH away from extremality => SCC is saved.

→ Quantum effects: theory with NO charged particles

• Now consider RNdS in **pure** Einstein-Maxwell theory (**no** charged matter).

- We have **Hawking radiation** of **photons** and **gravitons** from both the BH horizon and the cosmological horizon.
- This will **drive a RNdS BH away from extremality** towards a "lukewarm" solution (for which the two horizons have **equal temperatures**)
- BUT such BHs are still close enough to extremality
 to violate Christodoulou's version of SCC (but not C² version).

→ Quantum effects: theory with NO charged particles

• Expect the quantum state of the fields to approach

the Hartle-Hawking (thermal) state at late time.

• It would be interesting to calculate $\langle T_{\mu\nu}\rangle$ in this HH state

near the Cauchy horizon of a lukewarm BH.

• Does $\langle T_{\mu\nu} \rangle$ diverge at the Cauchy horizon sufficiently rapidly

to ensure that $G_{\mu\nu} = 8\pi \langle T_{\mu\nu} \rangle$ cannot be satisfied there, even weakly?

- If so then predictability would be enforced by vacuum polarization.
- Calculations in a 2d toy model show that

 $\langle T_{\mu\nu} \rangle$ does diverge at a Cauchy horizon. [Birrell & Davies 1977]

- The 4d case is much harder!

 $\langle T_{\mu\nu} \rangle$ has only been calculated outside a lukewarm RNdS black hole.

[Winstanley & Young (2007), Breen & Ottewill (2010)]

→ Summary

- Strong cosmic censorship: physics should be predictable from initial data!
- Very likely to be **true** for $\Lambda \leq 0$. True for **pure Einstein** theory with $\Lambda > 0$.
- **Badly** (very! not even C²) violated in <u>pure</u> Einstein-<u>Maxwell</u> theory with $\Lambda > 0$ unless we allow <u>rough</u> initial data.
- Opportunity for quantum effects to save the day?
- Further reading:
 - OD, Felicity Eperon, Harvey Reall, Jorge Santos
 1801.09694 (PRD) & 1808.02895 (JHEP) & 1808.04832 (CQG)
 - Mihalis Dafermos' website