Asymptotically Safe Quantum Gravity (and black holes)

Alessia Platania

Heidelberg University

The vacuum of the Universe IV 11-13 June 2019 Universitat de Barcelona

ruprecht-karls-UNIVERSITÄT HEIDELBERG

General Relativity

- Based on Einstein field equations
- Describes the gravitational interaction

How do quantum effects modify gravity at short distances?

Standard Model of particle physics

- Based on Quantum Field Theory
- Describes electromagnetic, strong and weak interactions

Einstein Gravity and Renormalization

Einstein-Hilbert action

$$S_{EH}=rac{1}{16\pi G}\int d^4x\sqrt{-g}\,\left(R-2\Lambda
ight)$$

<u>Power counting</u>: the Newton's constant has negative mass dimension \Rightarrow Ultraviolet divergences

General Relativity is not (perturbatively) renormalizable

Einstein Gravity and Renormalization

Einstein-Hilbert action

$$S_{EH}=rac{1}{16\pi G}\int d^4x\sqrt{-g}\;(R-2\Lambda)$$

<u>Power counting</u>: the Newton's constant has negative mass dimension \Rightarrow Ultraviolet divergences

General Relativity is not (perturbatively) renormalizable

Asymptotically Safe Gravity (Weinberg, 1976)

- General Relativity might be renormalizable from a *non-perturbative* point of view
- Key idea: generalized notion of renormalizability based on the Wilsonian Renormalization Group

S. Weinberg, Erice Subnucl. Phys.1976:1

Wilsonian Renormalization Group

Consider a theory described by the fundamental action

$$S[\Phi] = \int d^4x \, {\cal L}(\Phi, \partial_\mu \Phi, \dots) \, .$$

How does the theory look like at a different resolution scale k?

- **RG flow**: evolution of the action in the theory space

$$k\partial_k\Gamma_k = rac{1}{2}\mathrm{STr}\left\{\left(\Gamma_k^{(2)} + \mathcal{R}_k
ight)^{-1} k\partial_k\mathcal{R}_k
ight\}$$
 C. Wetterich. PLB 301:90 (1993)
M. Reuter. PRD **57** (2): 971 (1998)

- **RG fixed points**: endpoints of the RG flow (⇔ scale invariant regimes)

RG fixed points and renormalizability

Two types of well-definite ultraviolet completion (microscopic/fundamental theory)

- Gaussian Fixed Point (GFP): free theory ⇒ Asymptotic Freedom
- Non-gaussian Fixed Point (NGFP): interacting theory ⇒ Asymptotic Safety

RG fixed points and renormalizability

Generalized (non-perturbative) renormalizability

- Ultraviolet completion ⇔ UV-attractive fixed point (microscopic theory)
 - Gaussian Fixed Point (GFP): free theory ⇒ Asymptotic Freedom
 - Non-gaussian Fixed Point (NGFP): interacting theory ⇒ Asymptotic Safety
- **Predictivity** ⇔ finite number of relevant directions (finite-dimensional UV critical manifold)

Asymptotic Safety in Quantum Gravity

Einstein-Hilbert truncation

$$S_k = rac{1}{16\pi G_k}\int d^4x \sqrt{-g}\;(R-2\Lambda_k)$$

$$G_k = k^{-2}g_k \qquad \Lambda_k = k^2\lambda_k$$

Asymptotic Safety in Quantum Gravity

Einstein-Hilbert truncation

$$S_k = rac{1}{16\pi G_k}\int d^4x \sqrt{-g}\,\left(R-2\Lambda_k
ight)$$

 $G_k = k^{-2}g_k \qquad \Lambda_k = k^2\lambda_k$

Fixed points of the RG flow:

- **GFP** \rightarrow saddle point
- **NGFP** \rightarrow UV-attractor

Asymptotic Safety in Quantum Gravity

Einstein-Hilbert truncation

$$S_k = rac{1}{16\pi G_k}\int d^4x \sqrt{-g}\;(R-2\Lambda_k)$$

$$G_k = k^{-2}g_k \qquad \Lambda_k = k^2\lambda_k$$

Fixed points of the RG flow:

- **GFP** \rightarrow saddle point
- **NGFP** \rightarrow UV-attractor

- UV-attractive NGFP \Rightarrow the theory is well-defined and UV-complete
- NGFP stable against the addition of higher derivatives terms (3 relevant directions)

Looking for Asymptotic Safety: a (long) history

Functional RG equations for different ansatz allows to check the existence of a NGFP

$$k\partial_k\Gamma_k=rac{1}{2}\mathrm{STr}\left\{\left(\Gamma_k^{(2)}+\mathcal{R}_k
ight)^{-1}\,k\partial_k\mathcal{R}_k
ight\},$$

Polynomial up to N=71:

Reuter, Lauscher, '02; Codello, Percacci, Rahmede '09; Benedetti, Caravelli, '12; Dietz, Morris, '12; Falls, Litim, Nikolakopoulos, Rahmede, '13, '14 Demmel, Saueressig, Zanusso, '15; Falls, Litim, Schoeder, '18 **Beyond polynomial**:

Benedetti, Caravelli, '12; Demmel, Saueressig, Zanusso, '12; Dietz, Morris, '13

 $R^2+R_{\mu
u}R^{\mu
u}$

Benedetti, Machado, Saueressig, '09. Christiansen, '16, Oda, Yamada '17

 $C^{\kappa\lambda}_{\mu
u}C^{
ho\sigma}_{\kappa\lambda}C^{\mu
u}_{
ho\sigma}$

Gies, Knorr, Lippoldt, Saueressig '16

\rightarrow NGFP + 3 relevant directions

 \rightarrow Canonical power counting is still a good guideline

RG-flow: Gravity-matter systems

$$R_{\mu
u} - rac{1}{2} R \, g_{\mu
u} = 8 \pi G \, T_{\mu
u}$$

RG-flow: Gravity-matter systems

$$egin{aligned} R_{\mu
u} &-rac{1}{2}R\,g_{\mu
u} &= 8\pi G\,T_{\mu
u} \ && \downarrow \ && \downarrow \ && \downarrow \ && \downarrow \ && S_k &= S_k^{ ext{grav}} + rac{S_k^{ ext{matter}}}{S_k} \end{aligned}$$

1

RG-flow: Gravity-matter systems

$$egin{aligned} R_{\mu
u} & -rac{1}{2}R\,g_{\mu
u} & = 8\pi G\,T_{\mu
u} \ & \downarrow & \downarrow \ & \downarrow & \downarrow \ & S_k & = S_k^{ ext{grav}} + rac{S_k^{ ext{matter}}}{S_k} \end{aligned}$$

Is the gravitational RG flow influenced by the presence of matter fields?

RG flow: gravity coupled to SM matter

J. Biemans, <u>AP</u>, F. Saueressig JHEP 05 (2017) 093 (2017)

Important properties:

- Positive and real critical exponents
- Negative ultraviolet cosmological constant

 $\lambda_* < 0$

Astrophysical and cosmological implications

Black Holes in Asymptotically Safe Gravity

Spacetime singularities

- **Spacetime singularities** are a general feature of General Relativity
 - Cosmological singularity at the "origin of time"
 - Black hole singularities
- Implications
 - Divergence of physical quantities (curvature, energy density, etc..)
 - Impossible to determine the evolution of the spacetime beyond the singularity

Spacetime singularities

- **Spacetime singularities** are a general feature of General Relativity
 - Cosmological singularity at the "origin of time"
 - Black hole singularities
- Implications
 - Divergence of physical quantities (curvature, energy density, etc..)
 - Impossible to determine the evolution of the spacetime beyond the singularity

Can Asymptotically Safe Gravity solve this problem?

Quantum spacetime in Asymptotically Safe Gravity

The Wilsonian action tells us how the theory looks like at different energy scales.

→ When quantum-relativistic effects are taken into account, the classical Einstein field equations are modified

$$rac{\delta \Gamma_k}{\delta g_{\mu
u}}[\langle g
angle_k] = 0$$
 \longrightarrow Effective average geometry

Goal: understand how *quantum fluctuations* modify the classical solutions of GR in the high-energy regime

Antiscreening of the gravitational interaction at high energies

Renormalization group equations ⇒ **running Newton's coupling** •

 $G_k = rac{G_0}{1+G_0 \; q_*^{-1} k^2}$ A. Bonanno, M. Reuter Phys. Rev. D 62, 043008 (2000)

Antiscreening of the gravitational interaction at high energies

Renormalization group equations ⇒ running Newton's coupling •

 $G_k = rac{G_0}{1+G_0 \; a_\star^{-1} k^2}$ A. Bonanno, M. Reuter Phys. Rev. D 62, 043008 (2000)

If the Asymptotic Safety conjecture holds, there exists a scale-invariant regime at high energies • where the Newton coupling scales as

 $G_k = g_* k^{-2}$ for $k \gg M_{Pl}$

 \Rightarrow "anti-screening" effects of the gravitational interaction

Antiscreening of the gravitational interaction at high energies

Renormalization group equations \Rightarrow running Newton's coupling •

 $G_k = rac{G_0}{1+G_0 \ a_\star^{-1} k^2}$ A. Bonanno, M. Reuter Phys. Rev. D 62, 043008 (2000)

If the Asymptotic Safety conjecture holds, there exists a scale-invariant regime at high energies • where the Newton coupling scales as

 $G_k = q_* k^{-2}$ for $k \gg M_{Pl}$

 \Rightarrow "anti-screening" effects of the gravitational interaction

The anti-screening behavior of the Newton's constant implies a weakening of the • gravitational interaction at high energies

⇒ weakening of the *singularities* typically appearing in the classical theory

How to take into account this antiscreening effect? How "quantum-corrected BHs" look like?

A. Bonanno, M. Reuter. PRD 62 (2000) 043008 A. Bonanno, B. Koch, AP CQG 34 (2017) 095012

The case of QED: screening of the electric charge

The classical Coulomb potential is modified by the vacuum-polarization effects

The case of QED: screening of the electric charge

The classical Coulomb potential is modified by the vacuum-polarization effects

Coulomb
potential
$$V(k) = -\frac{e^2}{k^2}$$
 $V(r) = -\frac{\alpha}{r}$
Uehling
potential $V(k) = -\frac{e^2}{k^2(1-\Pi(k^2))}$ \rightarrow $V(r) = -e^2 \int \frac{e^{iqx}}{k^2(1-\Pi(k^2))} \frac{d^3q}{(2\pi)^3}$
 \downarrow $V(r) = -e^2 \int \frac{e^{iqx}}{k^2(1-\Pi(k^2))} \frac{d^3q}{(2\pi)^3}$
 $V(r) = -e^2 \int \frac{e^{iqx}}{k^2(1-\Pi(k^2))} \frac{d^3q}{(2\pi)^3}$

The case of QED: screening of the electric charge

C b

а

The classical Coulomb potential is modified by the vacuum-polarization effects

Coulomb
potential
$$V(k) = -\frac{e^2}{k^2}$$
 $V(r) = -\frac{\alpha}{r}$
Uehling
potential $V(k) = -\frac{e^2}{k^2(1-\Pi(k^2))}$ \longrightarrow $V(r) = -e^2 \int \frac{e^{iqx}}{k^2(1-\Pi(k^2))} \frac{d^3q}{(2\pi)^3}$
 \downarrow $V(r) = -e^2 \int \frac{e^{iqx}}{k^2(1-\Pi(k^2))} \frac{d^3q}{(2\pi)^3}$
 $V(r) = -e^2 \int$

The Renormalization Group improvement

In the context of QFT, the **RG-improvement** is widely used to study the *effect of leading order quantum corrections*

- Start from a classical system
- Replace coupling constants with the corresponding running couplings
- Close the system by identifying the RG-scale with a characteristic energy scale of the system

Example: RG-improvement of the electric potential in Quantum Electrodynamics
$$V(r) = -\frac{e^2}{r} \rightarrow V_k(r) = -\frac{e_k^2}{r} \rightarrow \frac{1}{k} \rightarrow \frac{1}{r} \quad V_1(r) \sim -\frac{e^2(r_0^{-1})}{4\pi r}(1 + b\log(r_0/r))$$
1-loop Uehling potential

$$ds^2 = -f(r)dt^2 + f^{-1}(r)dr^2 + r^2 d\Omega^2$$

$$\left\{ egin{array}{l} R_{\mu
u} - rac{1}{2}R\,g_{\mu
u} = 0 \ f(r) = 1 - rac{2\,m\,G_0}{r} \end{array}
ight.$$

$$\begin{aligned} ds^2 &= -f(r)dt^2 + f^{-1}(r)dr^2 + r^2 d\Omega^2 \\ \begin{cases} R_{\mu\nu} - \frac{1}{2}R \, g_{\mu\nu} &= 0 \\ f(r) &= 1 - \frac{2 \, m \, G_0}{r} & \longrightarrow & \begin{matrix} -2 \\ -1 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \end{matrix} \end{aligned}$$

$$\frac{ds^{2} = -f(r)dt^{2} + f^{-1}(r)dr^{2} + r^{2}d\Omega^{2}}{\begin{cases} R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} = 0 & -2 \\ f(r) = 1 - \frac{2 m G_{0}}{r} & -3 \\ -4 & -5 \\ -5 & -4 \\ -5 & -5 \\ -5 & -$$

$$k \gg M_{
m Pl}$$
 $k \sim k_{
m obs}$
 $G_k \sim g_* k^{-2}$ $G_k \equiv G_0$
[obtained by solving
the beta functions
from RG equations] $G_k = rac{G_0}{1+\omega \, G_0 k^2}$ $\omega = g_*^{-1}$

$$ds^{2} = -f(r)dt^{2} + f^{-1}(r)dr^{2} + r^{2}d\Omega^{2}$$

$$\begin{cases}
R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} = 0 \\
f(r) = 1 - \frac{2 m G_{0}}{r} & \xrightarrow{-3} \\
-3 \\
-4 \\
-5 \\
\end{array}$$

$$r = 0 & r \to \infty$$

$$k \gg M_{\text{Pl}} & k \sim k_{\text{obs}} \\
G_{k} \sim g_{*}k^{-2} & G_{k} \equiv G_{0} \\
G_{k} = \frac{G_{0}}{1 + \omega G_{0}k^{2}} & \omega = g_{*}^{-1}$$

$$ds^2 = -f(r)dt^2 + f^{-1}(r)dr^2 + r^2 d\Omega^2$$

By analogy with the case of QED:

$$egin{aligned} G_{(0)} & \longrightarrow \ G_{(1)} = rac{G_0}{1+\omega\,G_0\,k_{(1)}^2} \ k_{(1)} & \sim 1/d_0(r) & ext{Radial coordinate r} \ o ext{proper distance} \ G_{(1)}(r) = rac{G_0r^3}{r^3+\omega\,G_0(r+\gamma\,G_0m)} \end{aligned}$$

A. Bonanno, M. Reuter. Phys.Rev. D62 (2000) 043008

$$ds^{2} = -f(r)dt^{2} + f^{-1}(r)dr^{2} + r^{2}d\Omega^{2}$$

$$\begin{cases}
R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} = 0 \\
f(r) = 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4
\end{cases}$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4
\end{cases}$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4
\end{cases}$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4
\end{cases}$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4
\end{cases}$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4
\end{cases}$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4
\end{cases}$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4$$

$$(r)$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-3} \\
-4$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

$$= 1 - \frac{2 m G_{0}}{r} \xrightarrow{-2} \\
-2$$

33

r

 $r
ightarrow\infty$

 $k\sim k_{
m obs} \ G_k\equiv G_0$

 $\omega = g_*^{-1}$

1. Start from the classical metric and introduce the running of the Newton coupling as a perturbation

$$egin{cases} R_{\mu
u} - rac{1}{2} R \, g_{\mu
u} = 0 \ f_{(0)}(r) = 1 - rac{2 \, m \, G_{(0)}}{r} & \Longrightarrow & G_{(0)} \ \longrightarrow \ G_{(1)} = rac{G_0}{1 + \omega \, G_0 \, k_{(1)}^2} & k_{(1)} \propto r^{-lpha} \ \omega = g_*^{-1} \end{cases}$$

1. Start from the classical metric and introduce the running of the Newton coupling as a perturbation

2. The running of the Newton's coupling produces an **effective energy-momentum tensor**:

$$egin{aligned} R_{\mu
u} & -rac{1}{2}R\,g_{\mu
u} = 8\pi G\,T^{(1)}_{\mu
u} & & & \
ho_{(1)} & = rac{m}{4\pi r^2}rac{G'_{(1)}(r)}{G_{(1)}(r)} & & \
ho_{(1)} & = rac{m}{4\pi r^2}rac{G'_{(1)}(r)}{G_{(1)}(r)} & & \
ho_{(1)} & = rac{m}{4\pi r^2}rac{G'_{(1)}(r)}{G_{(1)}(r)} & & \
ho_{(1)} & = rac{m}{4\pi r^2}rac{G'_{(1)}(r)}{G_{(1)}(r)} & & \
ho_{(1)} & = rac{m}{4\pi r^2}rac{G'_{(1)}(r)}{G_{(1)}(r)} & & \
ho_{(1)} & = rac{m}{4\pi r^2}rac{G'_{(1)}(r)}{G_{(1)}(r)} & & \
ho_{(1)} & & \ \ho_{(1)} & & \
ho_{(1)} & & \
ho_{(1)} &$$

Effective quantum gravitational self-energy

1. Start from the classical metric and introduce the running of the Newton coupling as a perturbation

2. The running of the Newton's coupling produces an **effective energy-momentum tensor**:

$$egin{aligned} & \int R_{\mu
u} - rac{1}{2} R\, g_{\mu
u} = 8\pi G\, T^{(1)}_{\mu
u} & & & & \ f_{(1)}(r) = 1 - rac{2\,m\,G_{(1)}(r)}{r} & & & \ f_{(1)}(r) = rac{m}{4\pi r^2}\, rac{G'_{(1)}(r)}{G_{(1)}(r)} & & \ f_{(1)}(r) = rac{m}{r} & & \ f_{(1)}(r) = ra$$

Effective quantum gravitational self-energy

3. The effective energy density gives a measure of the **strength of QG effects**. We can use it to construct the next steps of the iteration and look for **fixed points**

$$k_{(n+1)}^2 = K[
ho_{(n)}] \implies egin{cases} R_{\mu
u} - rac{1}{2}Rg_{\mu
u} = 8\pi G_{(n+1)}T_{\mu
u}^{(n+1)} \ f_{(n+1)}(r) = 1 - rac{2mG_{(n+1)}(r)}{r} \implies G_{(n+1)} = rac{G_0}{1 + \omega \, G_0 \, K[
ho_n]} \ _{37}$$

1. Start from the classical metric and introduce the running of the Newton coupling as a perturbation

2. The running of the Newton's coupling produces an **effective energy-momentum tensor**:

- Effective quantum gravitational self-energy
- **3**. The effective energy density gives a measure of the **strength of QG effects**. We can use it to construct the next steps of the iteration and look for **fixed points**

$$egin{aligned} G_{(n+1)} &= rac{G_0}{1 + g_*^{-1} G_0 \, k_{(n+1)}^2} & & rac{k_{(n+1)}^2 = K[
ho_{(n)}]}{n o \infty} & & K[G'(r)] = g_* rac{G_0 - G(r)}{G_0 \, G(r)} \end{aligned}$$

RG-scale in dependence of the effective energy density

$$G_{(n+1)} = rac{G_0}{1 + g_*^{-1} G_0 \, k_{(n+1)}^2} \qquad rac{k_{(n+1)}^2 = K[
ho_{(n)}]}{n o \infty} \qquad K[G'(r)] = g_* \, rac{G_0 - G(r)}{G_0 \, G(r)}$$

• Case with a (running) cosmological constant

The relation we are looking for is determined by a *consistency relation* arising from the Bianchi identity.

In the proximity of the UV-fixed point

$$abla_\mu G_{\mu
u} = 0 \qquad \Rightarrow \qquad k^2 \sim rac{R}{4\lambda_*}$$

M. Reuter, H. Weyer. Phys.Rev. D69 (2004) 104022 Babic, Guberina, et al. Phys.Rev. D71 (2005) 124041 Bonanno, Esposito, et al. Class. Quant. Grav. 23 (2006) 3103

• Case at hand

The contracted Bianchi identity is not enough to constrain the scaling relation k(r)

⇒ Physical arguments needed

Let us analyse the quantum-corrected Ricci and Kretschmann scalars

$$R_{(n)} = rac{G_{(n)}}{G_0} ig\{ ar{R}_{cl} + c(r) \left(oldsymbol{
ho}_{(n)} G_0
ight) ig\}$$

$$K_{(n)} = rac{G_{(n)}^2}{G_0^2} \Big\{ ar{K}_{cl} + a(r) \sqrt{ar{K}_{cl}} \, \left(
ho_{(n)} G_0
ight) + b(r) \left(
ho_{(n)} G_0
ight)^2$$

- The coefficients a, b, c are dimensionless functions of r and they can also be negative!
- The strength of the *classical tidal forces* is counterbalanced by additional terms that depend on a single mass-scale. This scale acts as a *scale-dependent regulator* for the bare curvature invariants

Let us analyse the quantum-corrected Ricci and Kretschmann scalars

$$R_{(n)} = rac{G_{(n)}}{G_0} ig\{ ar{R}_{cl} + c(r) \left(oldsymbol{
ho}_{(n)} G_0
ight) ig\}$$

$$K_{(n)} = rac{G_{(n)}^2}{G_0^2} \Big\{ ar{K}_{cl} + a(r) \sqrt{ar{K}_{cl}} \, \left(
ho_{(n)} G_0
ight) \, + \, b(r) \left(
ho_{(n)} G_0
ight)^2$$

Strength of the classical gravitational field Measure of the strength of quantum effects

- The coefficients a, b, c are dimensionless functions of r and they can also be negative!
- The strength of the *classical tidal forces* is counterbalanced by additional terms that depend on a single mass-scale. This scale acts as a *scale-dependent regulator* for the bare curvature invariants

$$\longrightarrow \ k^2 \equiv \xi G_0
ho$$

Iteration and self-consistent solution

Three possibilities:

- 1) No RG fixed-point ⇒ the Schwarzschild metric is recovered
- Asymptotic Freedom ⇒ the Newton constant vanishes everywhere
- 3) Asymptotic Safety ⇒ Dymnikova BHs Non-perturbative renormalizability ⇒ Effective "renormalization" of the spacetime geometry (singularity-resolution)

Iteration and self-consistent solution

Properties of the solution

- → Singularity replaced by a de-Sitter core
- → Number of horizons determined by a *critical* mass of the order of the Planck mass
- → The Hawking temperature drops to zero when the mass approaches the critical value

Summary

- <u>AS-gravity</u>: Mechanism for constructing a consistent theory of Quantum Gravity
- NGFP providing a well defined UV-completion for the gravitational interaction
 ⇒ anti-screening effects at high energies
- Self-consistent BH solutions can be constructed by relating the RG-scale with the effective self-energy generated by the running of the Newton's coupling
- The procedure converges rapidly to a *self-consistent solution*, which is regular if a UV-attractive fixed point exists:

Asymptotic Freedom \rightarrow the Newton constant is everywhere zero

Asymptotic Safety -> Dymnikova black-hole, regular de-Sitter core

⇒ The appearance spacetime singularity might be related to the perturbative non-renormalizability of General Relativity

- Important generalizations:
 - Cosmological constant (internal consistency)
 - Cosmological solutions (similar mechanism? Bouncing cosmologies?)