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General Relativity
• Based on Einstein field equations
• Describes the gravitational 

interaction

Standard Model of particle physics
• Based on Quantum Field Theory
• Describes electromagnetic, strong 

and weak interactions
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How do quantum effects modify 
gravity at short distances?
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Einstein-Hilbert action

Power counting: the Newton’s constant has negative mass dimension  ⇒  Ultraviolet divergences

General Relativity is not (perturbatively) renormalizable
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Einstein-Hilbert action

Power counting: the Newton’s constant has negative mass dimension  ⇒  Ultraviolet divergences

General Relativity is not (perturbatively) renormalizable

Asymptotically Safe Gravity (Weinberg, 1976)

• General Relativity might be renormalizable from a non-perturbative point of view
• Key idea: generalized notion of renormalizability based on the Wilsonian Renormalization Group
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- RG flow: evolution of the action in the theory space

- RG fixed points: endpoints of the RG flow ( ⇔ scale invariant regimes)

Consider a theory described by the fundamental action

How does the theory look like at a different resolution scale k?

C. Wetterich. PLB 301:90 (1993)
M. Reuter. PRD 57 (2): 971 (1998)
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Two types of well-definite ultraviolet completion (microscopic/fundamental theory)

⁃ Gaussian Fixed Point (GFP): free theory ⇒ Asymptotic Freedom

⁃ Non-gaussian Fixed Point (NGFP): interacting theory ⇒ Asymptotic Safety

GFP

NGFP

Credits: 
A. Eichhorn

NGFP

GFP
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Generalized (non-perturbative) renormalizability

• Ultraviolet completion  ⇔  UV-attractive fixed point (microscopic theory)

⁃ Gaussian Fixed Point (GFP): free theory ⇒ Asymptotic Freedom

⁃ Non-gaussian Fixed Point (NGFP): interacting theory ⇒ Asymptotic Safety

• Predictivity ⇔ finite number of relevant directions (finite-dimensional UV critical manifold)

GFP

NGFP

Credits: 
A. Eichhorn

NGFP

GFP
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Asymptotic Safety in Quantum Gravity
Einstein-Hilbert truncation
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Asymptotic Safety in Quantum Gravity
Einstein-Hilbert truncation

Fixed points of the RG flow:

• GFP  →  saddle point
• NGFP  →  UV-attractor
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Asymptotic Safety in Quantum Gravity
Einstein-Hilbert truncation

Fixed points of the RG flow:

• GFP  →  saddle point
• NGFP  →  UV-attractor

- UV-attractive NGFP   ⇒   the theory is well-defined and UV-complete 
- NGFP stable against the addition of higher derivatives terms (3 relevant directions)

Parametric plot: RG flow for decreasing k

GFP

NGFP

M. Reuter, F. Saueressig 
Phys. Rev. D65, 065016



Functional RG equations for different ansatz
allows to check the existence of a NGFP 

11

Looking for Asymptotic Safety: a (long) history

Polynomial up to N=71:

Reuter, Lauscher, ’02; Codello, Percacci, Rahmede ’09; 

Benedetti, Caravelli, ’12; Dietz, Morris, ’12; Falls, Litim, 

Nikolakopoulos, Rahmede, ’13, ’14 Demmel, Saueressig, 

Zanusso, ’15; Falls, Litim, Schoeder, ‘18

Beyond polynomial:

Benedetti, Caravelli, ‘12; Demmel, Saueressig, Zanusso, 

‘12; Dietz, Morris, ‘13

Benedetti, Machado, Saueressig, ‘09. Christiansen, ’16, 

Oda, Yamada ‘17

Gies, Knorr, Lippoldt, Saueressig ‘16

S. Rechenberger, F. Saueressig Phys. 
Rev. D 86, 024018

→ NGFP + 3 relevant directions
→ Canonical power counting is still a good guideline
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RG-flow:

Gravity-matter systems
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RG-flow:

Gravity-matter systems
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RG-flow:

Gravity-matter systems

Is the gravitational RG flow influenced by the 

presence of matter fields? 
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RG flow: gravity coupled to SM matter J. Biemans, AP, F. Saueressig
JHEP 05 (2017) 093 (2017)
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Black Holes
in Asymptotically Safe 

Gravity

Astrophysical 

and cosmological 

implications
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Spacetime singularities

● Spacetime singularities are a general feature of General Relativity

● Cosmological singularity at the “origin of time”

● Black hole singularities

● Implications

● Divergence of physical quantities (curvature, energy density, etc..)

● Impossible to determine the evolution of the spacetime beyond the singularity
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Spacetime singularities

● Spacetime singularities are a general feature of General Relativity

● Cosmological singularity at the “origin of time”

● Black hole singularities

● Implications

● Divergence of physical quantities (curvature, energy density, etc..)

● Impossible to determine the evolution of the spacetime beyond the singularity

Can Asymptotically Safe Gravity solve this problem?
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Quantum spacetime in Asymptotically Safe Gravity

Effective average geometry

Goal: understand how quantum fluctuations modify the 
classical solutions of GR in the high-energy regime

The Wilsonian action tells us how the theory looks like at different energy scales.

➔ When quantum-relativistic effects are taken into account, the classical Einstein field equations 
are modified
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Antiscreening of the gravitational interaction at high energies

● Renormalization group equations ⇒ running Newton’s coupling

A. Bonanno, M. Reuter
Phys. Rev. D 62, 043008 (2000)
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Antiscreening of the gravitational interaction at high energies

● Renormalization group equations ⇒ running Newton’s coupling

● If the Asymptotic Safety conjecture holds, there exists a scale-invariant regime at high energies 
where the Newton coupling scales as

⇒ “anti-screening” effects of the gravitational interaction

A. Bonanno, M. Reuter
Phys. Rev. D 62, 043008 (2000)
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Antiscreening of the gravitational interaction at high energies

● Renormalization group equations ⇒ running Newton’s coupling

● If the Asymptotic Safety conjecture holds, there exists a scale-invariant regime at high energies 
where the Newton coupling scales as

⇒ “anti-screening” effects of the gravitational interaction

● The anti-screening behavior of the Newton’s constant implies a weakening of the 
gravitational interaction at high energies 

⇒ weakening of the singularities typically appearing in the classical theory

A. Bonanno, M. Reuter
Phys. Rev. D 62, 043008 (2000)

A. Bonanno, M. Reuter. PRD 62 (2000) 043008
A. Bonanno, B. Koch, AP CQG 34 (2017) 095012How to take into account this antiscreening effect?

How “quantum-corrected BHs” look like?
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The case of QED: screening of the electric charge

The classical Coulomb potential is modified by the vacuum-polarization effects

Coulomb

potential

Uehling

potential

Photon 

self-energy

Screening of the 

electric charge



24

The case of QED: screening of the electric charge

The classical Coulomb potential is modified by the vacuum-polarization effects

Coulomb

potential

Uehling

potential

Photon 

self-energy

Electric potential + 1-loop radiative corrections

Uehling, E. A. (1935). "Polarization Effects in the Positron 
Theory". Physical Review. 48: 55–63
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Coulomb

potential

Uehling

potential

Photon 

self-energy

Electric potential + 1-loop radiative corrections

Uehling, E. A. (1935). "Polarization Effects in the Positron 
Theory". Physical Review. 48: 55–63

One way to write the potential with radiative corrections is 
by introducing the running electric charge

and Fourier-transform to coordinate space.  

The case of QED: screening of the electric charge

The classical Coulomb potential is modified by the vacuum-polarization effects
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The Renormalization Group improvement

In the context of QFT, the RG-improvement is widely used to 
study the effect of leading order quantum corrections

➢ Start from a classical system

➢ Replace coupling constants with the corresponding 
running couplings

➢ Close the system by identifying the RG-scale with a 
characteristic energy scale of the system

Example: RG-improvement of the electric potential in Quantum Electrodynamics 

1-loop Uehling potential
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[obtained by solving 
the beta functions 
from RG equations]
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By analogy with the case of QED:

A. Bonanno, M. Reuter.
Phys.Rev. D62 (2000) 043008

Radial coordinate r 
→ proper distance
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By analogy with the case of QFT:

A. Bonanno, M. Reuter.
Phys.Rev. D62 (2000) 043008

...several interrelated issues:

- The RG scale k(r) depends on the classical 
background geometry

- In the strong-curvature regime, this metric is no 
longer valid

- The metric depends explicitly on the Newton 
coupling 

- Quantum effects modify the Einstein equations

⇒ backreaction effects must be taken into 
account



Goal: modify the system 
(metric + Einstein eqs) to 
find a black hole solution 
encoding the running of 
G in a self-consistent way 
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1. Start from the classical metric and introduce the running of the Newton coupling as a perturbation

Construction of self-consistent BH solutions
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2. The running of the Newton’s coupling produces an effective energy-momentum tensor:

Effective quantum 
gravitational 
self-energy

1. Start from the classical metric and introduce the running of the Newton coupling as a perturbation

Construction of self-consistent BH solutions
AP. EPJC 79 (2019) 470
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3. The effective energy density gives a measure of the strength of QG effects. We can use it to construct the
next steps of the iteration and look for fixed points

2. The running of the Newton’s coupling produces an effective energy-momentum tensor:

Effective quantum 
gravitational 
self-energy

1. Start from the classical metric and introduce the running of the Newton coupling as a perturbation

Construction of self-consistent BH solutions
AP. EPJC 79 (2019) 470
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2. The running of the Newton’s coupling produces an effective energy-momentum tensor:

3. The effective energy density gives a measure of the strength of QG effects. We can use it to construct the
next steps of the iteration and look for fixed points

Effective quantum 
gravitational 
self-energy

1. Start from the classical metric and introduce the running of the Newton coupling as a perturbation

Construction of self-consistent BH solutions
AP. EPJC 79 (2019) 470
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RG-scale in dependence of the effective energy density

● Case with a (running) cosmological constant

The relation we are looking for is determined by a consistency relation arising from the Bianchi 
identity.
In the proximity of the UV-fixed point

● Case at hand

The contracted Bianchi identity is not enough to constrain the scaling relation k(r)

⇒ Physical arguments needed

M. Reuter, H. Weyer. Phys.Rev. D69 (2004) 104022
Babic, Guberina, et al. Phys.Rev. D71 (2005) 124041

Bonanno, Esposito, et al. Class. Quant. Grav. 23 (2006) 3103

https://arxiv.org/search?searchtype=author&query=Reuter%2C+M
https://arxiv.org/search?searchtype=author&query=Weyer%2C+H
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Let us analyse the quantum-corrected Ricci and Kretschmann scalars

- The coefficients a, b, c are dimensionless functions of r and they can also be negative!

- The strength of the classical tidal forces is counterbalanced by additional terms that depend on 
a single mass-scale. This scale acts as a scale-dependent regulator for the bare curvature 
invariants
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Let us analyse the quantum-corrected Ricci and Kretschmann scalars

Strength of the 
classical 

gravitational field

Measure of the 
strength of quantum 

effects 

- The coefficients a, b, c are dimensionless functions of r and they can also be negative!

- The strength of the classical tidal forces is counterbalanced by additional terms that depend on 
a single mass-scale. This scale acts as a scale-dependent regulator for the bare curvature 
invariants
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Iteration and self-consistent solution
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Three possibilities:
 
1) No RG fixed-point ⇒ the Schwarzschild metric 

is recovered
2) Asymptotic Freedom ⇒ the Newton constant 

vanishes everywhere 
3) Asymptotic Safety ⇒ Dymnikova BHs

Non-perturbative renormalizability ⇒  Effective 
“renormalization” of the spacetime geometry 
(singularity-resolution)

Fixed point of the RG-improvement procedure

Dymnikova 
(1996)

AP. EPJC 79 (2019) 470



43

Iteration and self-consistent solution
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Properties of the solution

➔ Singularity replaced by a de-Sitter core

➔ Number of horizons determined by a critical 
mass of the order of the Planck mass

➔ The Hawking temperature drops to zero when 
the mass approaches the critical value

Fixed point of the RG-improvement procedure

Dymnikova 
(1996)

AP. EPJC 79 (2019) 470
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Summary
● AS-gravity: Mechanism for constructing a consistent theory of Quantum Gravity

● NGFP providing a well defined UV-completion for the gravitational interaction
⇒ anti-screening effects at high energies

● Self-consistent BH solutions can be constructed by relating the RG-scale with the effective self-energy 
generated by the running of the Newton’s coupling 

● The procedure converges rapidly to a self-consistent solution, which is regular if a UV-attractive fixed 
point exists:
Asymptotic Freedom → the Newton constant is everywhere zero
Asymptotic Safety → Dymnikova black-hole, regular de-Sitter core
⇒ The appearance spacetime singularity might be related to the perturbative non-renormalizability of 
General Relativity

● Important generalizations:
○ Cosmological constant (internal consistency)
○ Cosmological solutions (similar mechanism? Bouncing cosmologies?)


