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1 Motivation and Introduction

1.1 Why effective field theory?

The main reason to use effective field theories (EFTs) is that Nature decouples. Observations
always have a finite precision. Given this precision, all details of the theory that produce smaller
effects are irrelevant. Quantum (field) theories make this statement more subtle, as we will see,
because virtual effects probe all scales. Still, the effective field theory formalism we are going
to dicuss in these lectures provide well-defined methods to encode the effects of short distance
(high energies) physics at larger distances (smaller energies). There are also other reasons to
use EFTs in particle physics:
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• Because it simpler. EFTs provide methods to turn complicated, multi-scale problems into
a series of simpler, single-scale ones.

• Because (sometimes) we have to (I). In some cases we do not know the details of the
theory at smaller distances, or we do not know how to compute with it (because it is
strongly coupled, for example). In this case we can use EFTs as a general and convenient
parametrization of any short scale physics.

• Because (sometimes) we have to (II). The presence of large logarithms in physical prob-
lems with wildly separated scales can break perturbation theory, even in renormalisable
models. EFTs provide methods to resum these large logarithms, effectively reorganising
the perturbative expansion into a better behaved one.

EFTs have applications well beyond particle physics. However in these lectures we will
mostly focus on particle physics applications and will have in general a relativistic quantum field
theory (QFT) in mind. Thus, short distances correspond to high energies and long distances
to small energies. We will use both indistinctively and will talk about ultraviolet (UV) physics
when dealing with high-energy/short-distance effects and infrared (IR) physics when dealing
with low-energy/long-distance effects. Also in general, for the sake of concreteness, we will
usually have in mind some heavy physics, with a mass scale much larger than the energies that
can be experimentally probed, and we want to compute their effects on physical observables at
such energies. We will normally call the theory that includes the heavy particles the full theory
and the theory that parametrises their effect at low energies simply the EFT or IR theory.

In short, EFT is just what we do all the time in physics, some power counting that allow us
to estimate the size of different contributions (quite often based simply on dimensional analysis)
and a perturbative (Taylor) expansion. This peturbative expansion is of course quite subtle in
QFT, due to locality and renormalisation. Contrary to most perturbative expansions in physics,
at least in some cases in particle physics we can prove that the corresponding observables
are analytic in the relevant variables and, therefore, a Taylor expansion is mathematically
consistent. In general, like in any perturbative expansion, how useful it is depends on many
factors, including the size of the perturbative parameter or the nature of the expansion itself.

1.2 Observables in particle physics

The main observables in particle physics can be obtained from S-matrix elements which, thanks
to the reduction formula [1], can be computed in terms of connected, amputated correlators

out⟨q1, . . . , qm|p1, . . . , pn⟩in =

(
m∏
i=1

√
Ri

)(
n∏
j=1

√
Rj

)
G(q1, . . . , qm; p1, . . . , pn)

∣∣∣
conn.,amp.

, (1)

where the correlators are defined by

G(q1, . . . , qm; p1, . . . , pn) =
m∏
i=1

∫
d4yie

iqi·yi
n∏
j=1

∫
d4xje

ipj ·xj⟨Ω|T{ϕ(y1) . . . ϕ(ym)ϕ(x1) . . . ϕ(xn)}|Ω⟩,

(2)
and we have considered a single scalar field theory for simplicity. The above equations are valid
for any interpolating field

in⟨k|ϕ(x)|Ω⟩ =
√
Reik·x ⇔ DF (p) =

iR
p2 −m2

+ . . . , (3)
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where DF (p) is the full propagator and the dots stand for regular terms in the vicinity of the
pole. The independence on the interpolating field will be important when talking about EFT
bases below.

Correlators can be computed in perturbation theory, in terms of correlators in free field
theory

⟨Ω|T{ϕ(x1) . . . ϕ(xn)}|Ω⟩ =⟨0|T{ϕ0(x1) . . . ϕ0(xn)e
i
∫
d4xLint[ϕ0(x)]}|0⟩no vac. bubbles. (4)

These correlators can be computed using Wick’s theorem

T{ϕ0(x1) . . . ϕ0(xn)} =: ϕ0(x1) . . . ϕ0(xn) : + all possible contractions, (5)

where every contraction corresponds to a Feynman propagator.

2 Building the effective Lagrangian

In the following we will assume a local, Lorentz invariant, quantum field theory. Furthermore,
we will also assume that our theory is weakly coupled, so that a perturbative expansion in loops
and operator mass dimension is well behaved. We will also use natural units ℏ = c = 1.

We will define our theory by its Lagrangian, the sum of Lorentz (and gauge if relevant)
invariant local operators,

L =
∑
i

CiOi, (6)

where the coefficient of each operator is called Wilson coefficient (WC). Local operators are
those operators build with a finite number of fields (all evaluated at the same point) with a finite
number of derivatives acting on them. In momentum space the corresponding Feynman rules
are polynomials in momenta. Which operators should we use? In principle all local invariant
operators should be included. This means an infinite number of operators, which is clearly
unmanageable. As we will see in the next section, one can establish power-counting rules that
determine the size of the contribution of different operators. Given the finite experimental
precision, only operators with a sizeable contribution to experimental observables need to be
kept. Furthermore, depending on which physics we want to reproduce, the number of operators
to consider can be further reduced.

2.1 Power counting

Power-counting arguments allow us to estimate the size of the contribution of any operator to
physical observables.

In perturbation theory, quadratic terms are especially important, as they determine the
free-field theory that we expand around in our perturbative calculations. In particular, the
kinetic term sets the size of all the remaining scales, via canonical normalization, and the mass
dimension of all fields and couplings. The mass term, in turn, fixes the on-shell condition for
physical particles. Let’s consider the quadratic term of a complex scalar and a Dirac fermion

L = −ϕ†(∂2 +m2
ϕ)ϕ+ ψ[i/∂ −mψ]ψ. (7)

Since the action is dimensionless in natural units, the Lagrangian has mass dimension 4. Deriva-
tives (and masses) have mass dimension 1 and therefore we have

[ϕ] =(4− 2)/2 = 1, (8)

[ψ] =(4− 1)/2 = 3/2. (9)
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This extends to other fields so the mass dimension of any boson is 1 and the one of any fermion
is 3/2. This automatically fixes the mass dimension of any local operator, and, therefore, of its
WC. Given a local operator of mass dimension D, its WC will have mass dimension 4−D and
therefore we can generically write our effective Lagrangian

L =
∑
D

L(D), (10)

where L(D) is the effective Lagrangian of operators of mass dimensions D, generically written
as

L(D) =
∑
i

CD,iO(D)
i =

∑
i

cD,i
ΛD−4

O(D)
i . (11)

In the second equality we have introduced an explicit power of the cut-off Λ to make the WC
c
(D)
i dimensionless. Note that the cut-off represents a physical threshold, like the mass of a
heavy particle, and therefore it makes sense to consider a common cut-off for all operators.
The corresponding dimensionless WC are expected to be of order one (times the relevant loop
suppression) or smaller. Once can devise more sophisticated power-counting rules, depending
on the class of UV effects we want our EFT to describe at low energies (see for instance [2]
for the case a strongly interacting light Higgs). However, we will stick in these lectures to a
purely mass dimension and loop expansion power counting. Thus, our general EFT Lagrangian
is given by a double expansion on mass dimension and loop order

LEFT =
∑
D≥1

nD∑
i=1

cD,i
ΛD−4

O(D)
i , (12)

with

cD,i =
∑
l≥0

c
(l)
D,i

(16π2)l
, (13)

and c
(l)
D,i expected to be order one, unless generated from a higher scale than Λ or at a higher

loop order, in which case it will be smaller than this naive expectation.
Note that for each mass dimension D, the number of invariant operators, assuming a finite

number of fields in our theory, is finite. The key observation that makes EFTs useful is that
operators of higher mass dimension have smaller contribution to low energy amplitudes than
lower-dimensional ones. This applies to the sum of the mass dimension of all operator insertions
in the amplitude so adding more higher-dimensional operators is also suppressed. Let’s see it
in some detail. Let us consider a low scattering amplitude normalised to be dimensionless (the
mass dimension of an n-particle scattering amplitude is 4−n, we can compensate any additional
dimension with the available dimensionful scales). We assume that all physical quantities in our
theory (physical masses and external momenta, globally denoted by m and p, respectively) are
of similar size and much smaller than the cut-off, p ∼ m≪ Λ. Let’s assume that the amplitude
we are computing has one insertion of an operator of dimension D and all other operators
are dimension 4 (so that their coefficients are dimensionless). By dimensional analysis the
amplitude has to scale like

M ∼
( p
Λ

)D−4

, (14)

where p represents a combination of low energy scales. Thus, we see that, at low energies, the
effect of operators of mass dimension larger than 4 are suppresses by the small ratio (p/Λ)D−4 ≪
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1. Furthermore, the larger the dimension, the stronger the suppression. The general power
counting rule is that

M ∼
( p
Λ

)n
, (15)

where
n =

∑
i

(Di − 4), (16)

and the sum runs over all operator insertions (vertices or, equivalently WCs) in the diagram.
In general, operators of mass dimension larger than 4 have suppressed effects at low energies. 1

Thus, operators of mass dimension larger than a certain value give contribution to experimental
observables smaller than the experimental precision and can therefore be excluded from our
analysis. Note that this leaves a finite number of operators that we need to include in our EFT.
The order in operator dimension (and also in the loop expansion) is fixed by the experimental
accuracy for the particular observables we are interested in. For observables with enough
experimental precision, the number of operators to include, while finite, can be very large.
Our argument seems to be tree-level based but if we use a mass-independent renormalisation
scheme, like MS in dimreg, it applies unchanged for loop contributions.

In fact, this argument allows us to discuss the (irr)relevance of operators at low energies
according to their mass dimension. Operators of mass dimension larger than 4 are called
irrelevant, as their contribution at low energies is more and more suppressed; operators of
mass-dimension smaller than 4 are called relevant, as their importance grows at low energies;
finally, operators of mass-dimension 4 are called marginal, as their contribution is the same
as all energies. As we will see, this scaling gets modified by quantum corrections, via the
renormalisation group. In weakly coupled theories, this modification is not crucial for relevant
or irrelevant operators but it is for marginal ones, as even a small correction can tilt them in
one or the other direction.

2.2 Dimensional analysis in d space-time dimensions

As already mentioned, we will use dimreg to regularise our loop integrals. It is therefore
convenient to extend our previous power-counting arguments, based on dimensional analysis,
to the case of arbitrary d = 4 − 2ε dimensions. The procedure is similar to the one in the
previous section but now the Lagrangian has mass dimension d in d dimensions. Derivatives
(and masses) still have mass dimension 1 in any number of space-time dimensions and therefore
we have

[ϕ] =(d− 2)/2 = [ϕ]d=4 − ε, (17)

[ψ] =(d− 1)/2 = [ψ]d=4 − ε, (18)

where [ϕ]d=4 = 1 and [ψ]d=4 = 3/2. The same happens for other fields so that, independently
of whether they are bosons or fermions, we have

[Φ]d = [Φ]d=4 − ε, (19)

1Note that, in principle, the contribution of an operator of mass-dimension larger than 4 could be compen-
sated by operators of mass-dimension smaller than 4. Adding more of these smaller than 4 mass dimension
operators would then seem to compensate arbitrary higher-dimensional operators. In practice, even if we expect
these operators to be proportional to a positive power of the cut-off, Λ, they are observed to be of the order of
the light scales -which is related to the so-called hierarchy problem- and therefore they cannot compensate the
contribution of higher-dimensional operators.
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where Φ stands for any field. This automatically allows us to obtain the mass dimension of any
operator (and therefore its WC). Let us consider a generic term in the Lagrangian of the form

L = CO = C ∂mΦn, (20)

where we have symbolically represented an operator with n fields (of any kind) andm derivatives
acting on them. Requiring that the mass dimension of the Lagrangian is d we get

4− 2ε = [C] + [O]d=4 − nε⇒ [C] = 4− [O]d=4 + (n− 2)ε = [C]d=4 + (n− 2)ε. (21)

We can preserve dimensional analysis as in d = 4 by including explicitly a dimensionful scale
in the WCs,

L = µ(n−2)εCO, (22)

where n is the number of fields (of any kind) appearing in O and now [C]d = [C]d=4.

Note:-

This is consistent with redefining the integral measure when going to d = 4− 2ε dimensions
to maintain the mass dimension of the corresponding integral for any d∫

d4k

(2π)4
→ µ4−d

∫
ddk

(2π)d
≡ µ2ε

∫
k

, (23)

where we have defined a notation that we will heavily use in this notes for the d−dimensional
loop integral. The radial measure is then

µ2εkd−1dk =
(µ
k

)2ε
k3dk ≪ k3dk, for µ≪ k (ε > 0). (24)

Thus, for positive ε the integrals are effectively cut-off in the UV at scales

Λdimreg ∼ µ2e
1
ε ≫ µ. (25)

2.3 Regularisation and renormalisation

In QFT we have to integrate over all values of undetermined loop momenta. This gives rise
to divergent integrals that can be dealt with via regularisation and renormalisation. In these
lectures we will use dimensional regularisation (dimreg) to regulate the integrals and modified
minimal substraction (MS) to renormalise them. Mass independent regularisation schemes,
like dimreg, have the advantage to preserve the power counting of the EFT in terms of mass
dimensions, as we will discuss below. We will assume that the reader is comfortable with dimreg
and MS and discuss here only the properties that are relevant for us.

Some useful properties of dimreg (for one-loop matching calculations) are

• Scaleless integrals vanish. By scaleless integrals we mean integrals that only depend on
the loop momentum, up to a (possibly dimensionful) proportionality factor. Of these, a
special one is ∫

k

1

k4
=

i

16π2

(
1

εUV

− 1

εIR

)
= 0, (26)

by which we mean that this particular integral vanishes because of the cancellation (after
analytic continuation) between a UV and an IR pole, which is relevant for renormalisation
(in which the only relevant contribution is the UV pole). All other scaleless integrals
vanish identically (not involving UV or IR poles).
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Exercise 2.1. Argue by dimensional analysis that all scaleless integrals except possi-
bly the one given in Eq.(26) are identically zero. Using the identity

1

k4
=

1

k2(k2 −M2)
− M2

k4(k2 −M2)
(27)

split the integral in Eq. (26 ) in two separate integrals, with the integrands in the
previous identity, and discuss their UV and IR divergences. Compute them using
dimreg and prove the identity in (26). You can use the general result

In,m ≡
∫
k

1

(k2)n
1

(k2 −M2)m
=

(−1)n+mi

(4π)2−ε(M2)n+m−2+ε

Γ(n+m− 2 + ε)Γ(2− n− ε)

Γ(m)Γ(2− ε)
.

(28)

Solution:-

A generic scaleless integral of the form

In ≡ µ−2ε

∫
k

1/kn, (29)

has mass dimension 4−n. If n ̸= 4 then it has to be proportional to a dimensionful
scale, but there is no dimensionful scale in the integral so it has to be identically 0
by dimensional analysis. The case n = 4 is special but we can write

I4 = µ−2ε

∫
k

1

k4
= µ−2ε

∫
k

1

k2(k2 −M2)
− µ−2ε

∫
k

M2

k4(k2 −M2)
≡ IUV

4 − I IR4 . (30)

where the first integral is UV divergent but IR convergent and the opposite for the
second one. Using Eq. (28) we obtain

IUV
4 = I1,1 =

i

16π2

(
1

ε̄UV

+ 1 + ln
µ2

M2

)
, (31)

I IR4 =M2I2,1 =
i

16π2

(
1

ε̄IR
+ 1 + ln

µ2

M2

)
. (32)

Technically we have εUV > 0 and εIR < 0 but we can analytically continue one
into the other and have a unique ε. Taking the difference we obtain the requested
result.

• Integration by parts identities∫
k

1

(k2 −M2)n+1
=
d− 2n

2n

1

M2

∫
k

1

(k2 −M2)n
, n ≥ 1, (33)

which allow us to write all relevant integrals in terms of the tadpole integral, with value

µ2ε

∫
k

1

(k2 −M2)
=

iM2

16π2

[
1

ε
+ 1 + log

(
µ2

M2

)
+O(ε)

]
, (34)

where 1/ε ≡ 1/ε− γE + log(4π), with γE ≈ 0.577 the Euler-Mascheroni constant.
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Exercise 2.2. Use the identity

0 =

∫
k

∂

∂kµ
kµ

(k2 −M2)n
, (35)

to prove Eq. (33).

Solution:-

∂

∂kµ
kµ

(k2 −M2)n
=

d

(k2 −M2)n
− 2nk2

(k2 −M2)n+1

=
d

(k2 −M2)n
− 2n(k2 −M2 +M2)

(k2 −M2)n+1

=
d− 2n

(k2 −M2)n
− 2nM2

(k2 −M2)n+1
, (36)

which, upon integration produces Eq. (33).

Some other properties are not particular of dimreg but will be very useful in our calculations.
They include

• Partial fractioning

1

(k2 −m2
1)(k

2 −m2
2)

=
1

m2
1 −m2

2

[
1

k2 −m2
1

− 1

k2 −m2
2

]
, m1 ̸= m2, (37)

which allow us to separate propagators with different masses.

• Hard region expansion. Different exact identities allow us, upon iteration, to perform
expansions in the so-called hard region limit, in which the loop momentum is much larger
than the external momenta or the masses of the external (light) particles.

1

(k + p)2 −M2
=

1

k2 −M2

[
1− p2 + 2k · p

(k + p)2 −M2

]
, (38)

which is useful to expand in the limit p2 ≪ k2 ∼ M2, the hard region in the presence of
heavy masses.

1

(k + p)2 −m2
=

1

k2

[
1− p2 + 2k · p−m2

(k + p)2 −m2

]
, (39)

which corresponds to the hard region in the presence of light masses (p2 ∼ m2 ≪ k2).
Note that in this case the degree of divergence in the UV is preserved but the one on the
IR is worsened. Thus, in general spurious IR divergences can be generated in this process.
These spurious IR divergences are related to spurious UV divergences in other kinematic
limits of the same integral which can be related to UV divergences in the EFT. At one
loop IR poles can be easily disentangled from UV ones and there is usually no problem
whenever we are interested in the renormalisation of our theory. If we go beyond one loop
or we need to find the finite rational terms that come from UV poles it is generally more
difficult to disentangle IR from UV poles and another identity is normally useful [3]

1

(k + p)2 −m2
=

1

k2 −M2
Λ

[
1− 2k · p+ p2 +M2

Λ −m2

(k + p)2 −m2

]
, (40)
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where MΛ is a spurious mass that regulates all IR divergences. Upon iteration we will
obtain eventually a convergent integral that does not contribute any 1/ε poles. Any
remaining poles are necessarily UV and we only need to keep those that produce a result
that is independent of the spurious mass.

2.4 Locality of UV divergences and renormalisation

One loop amplitudes can have IR (k → 0) or UV (k → ∞) divergences. Both are regularised
in dimreg but they have very different origins and consequences. Roughly speaking, IR di-
vergences are non-physical, and they cancel in sufficiently exclusive physical observables. UV
divergences, instead, are cancelled when we express physical observables in terms of other phys-
ical observables. This is very cumbersome in practice and it is much easier to use the WCs and
the fields in our Lagrangian as intermediaries. This is possible because UV divergences, once
subdivergences have been dealt with, are local (a polynomial in momenta) and can therefore
be absorbed in the WC of local operators. Locality of UV divergences can be simply proven
by taking derivatives of the corresponding integral with respect to external momenta. Each
integral will improve the UV divergence of the integral so that after a finite number of deriva-
tives we end up with a finite integral. The original one can be recovered by integration so that
the divergences are located in the integration constants, that contribute as a polynomial in
momenta and are therefore local.

Exercise 2.3. Consider the following divergent integral

I(p) =

∫ ∞

0

dk
k

k + p
. (41)

Take as many derivatives with respect to p as needed to make the integral finite and
compute it. Write the original integral, by integrating the result with respect to p, as a
non-local function of p plus a polynomial in p (with possibly divergent coefficients).

Solution:-

I(p) is linearly divergent in the UV (k → ∞). Its first integral is logarithmically divergent
and the second one is finite,

I ′(p) = −
∫ ∞

0

dk
k

(k + p)2
, I ′′(p) = 2

∫ ∞

0

dk
k

(k + p)3
=

1

p
. (42)

Integrating twice, with respect to p, we obtain∫ ∫
dpI ′′(p) =

∫
dp [c1 + ln p] = p ln p− p+ c1p+ c2. (43)

where c1 and c2 are integration constants that contain the UV divergences of the original
integral. The important point is that they arise from the integration and therefore are
always propostional to polynomial in momenta, a sign of local operators generating them.

The practical idea behind renormalisation is that, since UV divergences are local (after
non-local subdivergences have been subtracted), they can be eliminated in a redefinition of
the WCs appearing in the Lagrangian (technically fields also need to be redefined to absorb
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divergences proportional to the kinetic term). Since these objects (WCs and fields) are not
directly observable, this redefinition can be simply viewed as fixing them by experimental
measurements of physical observables. Once they have been fixed by experiment, we can
compute any physical observable in terms of them and the result is guaranteed to be finite.

In order to simplify our notation we are going to neglect two loop and higher orders in
perturbation theory. Subtleties arising at these orders with respect to the one-loop case we
are going to consider, like the presence of non-local divergences due to UV divergent sub-
diagrams, can be dealt with by systematically renormalising the theory to lower orders in the
loop expansion. It is best to work with the quantum effective action, Γ[Φ], the generator of
one-particle-irreducible (1PI) Green’s functions. Since the vertices arising from Γ are to be
used in tree-level diagrams, no further loop divergences appear once Γ has been made finite via
renormalisation.

Once subdivergences have been subtracted (which is automatically done at a certain loop
orded by renormalising the theory at lower loops), the remaining UV divergences are local
so that we can write the divergent part of the quantum action in terms of a divergent local
Lagrangian,

Γdiv =

∫
ddxLdiv =

∫
ddx

∑
i

C ′
iOi, (44)

where C ′
i are divergent coefficients parametrising the UV divergences (plus maybe some local

terms, depending on the chosen renormalisation scheme). The parameters in the Lagrangian
defining our model (WCs and fields) are not directly observable but can be fixed in terms
of observables that depend on them. This process of fixing them involves the cancellation of
possible divergences and fixing the finite part to reproduce experimental measurements. The
former can be systematised by means of a renormalisation scheme. In these lectures we will
use the MS scheme, in which only poles in 1/ε are subtracted. The simplest way to do this is
to split the original (bare) objects into renormalised ones (finite, to be fixed by experiment)
and counterterms (infinite, with possibly a finite part that depends on the renormalisation
scheme, that cancel the divergences in the quantum action) as follows. First, we will canonically
normalise the divergent Lagrangian appearing in Eq. (44) so that the kinetic term is normalised
to one. This eliminates the need for a wave-function renormalisation counterterm and our
fields can then be already considered the fields in the canonically normalised theory are already
renormalised fields. We then split the WCs into a renormalised coupling and a counterterm,
that will eliminate the relevant divergences 2

Cbare
i = µ(ni−2)ε(Ci + δCi). (47)

2Our notation is completely equivalent to a more standard notation in which we do not canonically normalise
Ldiv and introduce the following renormalisation constants

Cbare
i = µ(ni−2)εZiCi, Φbare(x) =

√
ZΦΦ(x), (45)

where Zi are the WC renormalisation constants and ZΦ the wave function renormalisation constant (for sim-
plicity we have not distinguished between the different fields appearing in the operators but there should be a
factor of

√
ZΦ for each field in Oi). The bare Lagrangian can then be written again in terms of a renormalised

Lagrangian plus counterterms by expanding the renormalisation constants

L =
∑
i

Cbare
i Obare

i =
∑
i

µ(ni−2)εZiZ
ni
2

Φ CiOi = µ(ni−2)εCiOi + counterterms, (46)

and renormalisation proceeds like in our case.
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Assuming that we have canonically normalised the divergent Lagrangian in Eq.(44) we then
have

δCi = −C ′
i. (48)

2.5 Renormalisation group equations

The process of renormalisation introduces a renormalisation scale, µ, that appears in the cal-
culation of loop amplitudes. Of course, this is an arbitrary scale that we have introduced and
physical observables can therefore not depend on it. This means that renormalised WCs should
also depend on µ in such a way that physical observables are independent of µ. The simplest
way of computing the dependence of renormalised WCs on µ is to use the fact that bare WCs
do not depend on µ so that we get the scale dependence from the counterterms 3. Let’s see
how this is done in general. Let’s define the beta function of a Wilson coefficient

βCi ≡ Ċi ≡
dCi
d lnµ

. (49)

We then have

dCbare
i

d lnµ
= 0 = µ(ni−2)ε

[
ε(ni − 2)(Ci + δCi) + βi +

∂δCi
∂Cj

βj

]
= µ(ni−2)ε[ε(

−→
nC +

−−→
nδC) + (1 +M) · β⃗], (50)

where we have used matrix notation in the last equality with the following definitions

−→
nCi ≡(ni − 2)Ci, (51)
−−→
nδCi ≡(ni − 2)δCi, (52)

Mij ≡
∂δCi
∂Cj

, (53)

β⃗i ≡βi. (54)

From Eq.(50) we can write a formal expression for the beta functions, valid to any loop order,

β⃗ = −ε(1 +M)−1 · (
−→
nC +

−−→
nδC). (55)

Note that in perturbation theory the inverse of the corresponding matrix is well defined in a
perturbative sense.

Let us now consider the ε expansion of the above equation. The counterterms (and therefore
the matrix M) have an expansion

δCi =
∞∑
n=0

C
(n)
i

εn
, M =

∞∑
n=0

M (n)

εn
. (56)

It is therefore clear that the beta functions have a generic expansion of the form

βi =
∞∑

n=−1

β
(n)
i

εn
= β

(−1)
i ε+ β

(0)
i + . . . . (57)

3We are grateful to Renato Fonseca for numerous discussions on this issue, that have shaped the procedure
described below.
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The beta function in four dimensions is β
(0)
i and more singular terms are normally considered to

vanish, giving consistency conditions of the calculation at 2 and higher loops (see however [4]).
Introducing the expansions, Eq.(56) into the general expression for the beta function and keep-
ing the finite term in the 1/ε expansion we obtain the correct result. In order to get a closed
expression let us consider the beta functions in the MS scheme (we can go from this to the

MS scheme by simply taking µ2 → µ̃2 = 4πe−γEµ2. In that case we have C
0)
i = M (0) = 0 and

therefore

β⃗ = −ε

[
−→
nC +

−−→
nδC −M (1) ·

−→
nC

ε
+ . . .

]
= −ε

−→
nC +M (1) ·

−→
nC −

−−→
nδC +O(1/ε), (58)

so that β
(−1)
i = −(ni − 2)Ci and,

β
(0)
i = (nj − 2)Cj

∂δC
(1)
i

∂Cj
− (ni − 2)δC

(1)
i . (59)

Finally, using the relation between the counterterms and the WCs of the divergent Lagrangian,
Eq. (48), we obtain the final expression for the beta functions

β
(0)
i =

[
(ni − 2)− (nj − 2)Cj

∂

∂Cj

]
C

′ (1)
i = −2LC

′ (1)
i , (60)

where we have defined

C ′
i =

∞∑
n=1

C
′ (n)
i

εn
, (61)

and also the loop operator L that, when acting on a perturbative expression gives, for each
term in the expanded expression, the loop order of the term times the term itself.

Exercise 2.4. Use the following topological identities for connected diagrams

L = P − V + 1, 2P + E =
∑
v

nv, (62)

where the sum in the second expression runs over all vertices in the diagram, L stands
for the number of loops, P for the number of internal propagators, V for the number of
vertices, nv is the number of particles on vertex v and E is the number of external particles,
to show that [

(ni − 2)− (nj − 2)Cj
∂

∂Cj

]
C

′ (1)
i,D = −2LC

′ (1)
i,D . (63)

Where C
′ (1)
i,D is a polynomial of WCs arising from diagram D.

Solution:-

C
′ (1)
i is computed as a sum of contributions from Feynman diagrams

C
′ (1)
i =

∑
D

C
′ (1)
i,D , (64)

where D runs over all diagrams that contribute and C,Di
′ (1) is a polynomial in all the
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WCs of the model. Using the topological identities we have[
(ni − 2)− (nj − 2)Cj

∂

∂Cj

]
C

′ (1)
i,D =

[
E − 2−

∑
v

(nv − 2)

]
C

′ (1)
i,D

= [E − 2− 2P − E + 2V ]C
′ (1)
i,D = −2LC

′ (1)
i,D . (65)

In the first identity we have used that ni = E and that

Cj
∂

∂Cj
, (66)

acting on C
′ (1)
i,D just runs over all vertices returning C

′ (1)
i,D .

2.6 Dimensional analysis and renormalisability

The power-counting argument used in the previous sections can be used to sketch the relation
between the mass dimension of the operators in the Lagrangian and renormalisability. Going
back to the general power-counting rule in Eqs. (15) and (16) we see that the insertion of op-
erators of mass dimension less than four reduce the dimension of the corresponding divergence
(they contribute positive powers of Λ). Thus, they need counterterms of lower mass dimension.
These operators are called super-renormalisable. Insertion of operators of mass-dimension 4
maintain the mass dimension fo the divergence. They are called renormalisable. Insertion
of operators of mass-dimension larger than 4, however, increase the degree of the divergence
(insertion of two dimension 5 operators induce a divergence of dimension 6) and therefore
need counterterms of higher dimension than the operators themselves. These are called non-
renormalisable operators. The situation is clear. Renormalisable (and super-renormalisable)
theories can only generate divergences of mass-dimension 4 or lower, which can therefore be
rernormalised with a finite number of counterterms. Non-renormalisable theories, on the other
hand, generate divergences of higher and higher dimensions by introducing more insertions of
non-renormalisable operators and therefore need an infinite number of counterterms to renor-
malise the theory. 4

The important message we want to pass on is that, while non-renormalisable need, in
principle, an infinite number of counterterms, in practice we only care about the effective
Lagrangian up to a finite mass dimension. Counterterms of higher dimension can therefore be
discarded and, for all practical calculations, non-renormalisable theories can be renormalised
in exactly the same way remormalisable theories are.

Note that there is a direct correlation between super-renormalisable, renormalisable and
non-renormalisable operators with relevant, marginal and irrelevant operators. There was a
time in which only renormalisable (including super-renormalisable interactions) theories were
considered valid. This is not the case anymore and we now tend to consider everything an EFT.
It is still true, however, because of this relation, that at energies much lower than the physical

4The situation is actually a bit more involved than the simple sketch we have described here, as the insertion
of more vertices typically lead to a larger number of propagators and, therefore, to a more convergent integral
(unless there are powers of momenta in the vertices themselves). The conclusion is nevertheless true. A more
detailed discussion that considers the superficial degree of divergence can be found in any QFT textbook.
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threshold, only (super-)renormalisable interactions are relevant for phenomenology. One needs
to approach the phsycial threshold or increase the precision of the experimental measurements,
to be sensitive to the effects of non-renormalisable interactions.

3 EFT bases

The basis of operators that we need to use in our EFT depends on the physics we want to
describe. As we mentioned above, the experimental precision of physical observables determine
the maximum operator dimension we need to keep in our basis. Operators that are related to
others by integration by parts relations are redundant, and can be eliminated from our basis
(integration by parts corresponds physically to momentum conservation). Similarly, group
theory identities can be used to further reduce the number of operators needed. No further
reduction can be done in general, and the resulting basis, called Green’s basis, can be used to
compute off-shell quantities in d dimensions. Gauge invariance can be tricky here, because it is
broken by gauge fixing when quantizing the theory (only BRST invariance is preserved, which
is enough to ensure gauge invariance of physical observables but not of un-physical off-shell
quantities, like general off-shell Green’s functions or counterterms). The solution is to either
add non-gauge-invariant operators to our Green’s basis or, much more conveniently, use the
background field method, that we will discuss below. If we are doing calculations that are
essentially in d = 4 dimensions, like tree-level calculations or one-loop RGEs (that are done
in d = 4 − 2ε dimensions but we are only interested in the coefficient of the 1/ε UV pole and
therefore the rest of the amplitude can be computed in 4 dimensions), we can further simplify
our basis by using 4-dimensional properties, like Fierz identities. Finally, if we are computing
on-shell physical observables we can further reduce our Green’s basis to a physical basis, in
which some operators that are needed for off-shell calculations become redundant in on-shell
observables. This class of redundant operators can be reduced by using field redefinitions, or
equivalently, at the linear level, equations of motion (EOM).

Building a physical basis, a Green’s basis and the reduction of the latter into the former is a
non-trivial task but it is a taks that, in principle, only needs to be done once. One is free to use
different (physical or Green’s) bases, and several have been proposed in the case of the Standard
Model EFT (SMEFT). Some are more convenient for comparing with experimental data, some
for connecting them with models of new physics. If complete, they are all equivalent, provided
all the relevant translations between bases are done correctly.

3.1 On-shell redundancies: field redefinitions and equations of mo-
tion

We have emphasized that S-matrix elements can be computed, via the reduction formula,
from on-shell correlators of arbitrary interpolating fields. It is then clear that we can perform
perturbative field redefinitions, that maintain the nature of the interpolating fields, to reduce
certain operators in the Green’s basis in favour of the ones in the physical one. In the path
integral formalism of QFT the fields are integration variables in the path integral and field
redefinitions just correspond to change of variables. The actual reduction of operators goes
beyond a simple change of variables, as it corresponds to a change in the Lagrangian without
the corresponding change in the source terms or the Jacobian. A careful analysis shows that
this can always be done to reduce redundant operators [5, 6].

We will see a very simple example in the following exercise
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Exercise 3.1. Consider the following Lagrangian for a real scalar

L = L4 + L6, (67)

L4 = −1

2
ϕ(∂2 +m2)ϕ− λϕ4, (68)

L6 =
α61

Λ2
ϕ6 +

β62
Λ2

ϕ3∂2ϕ. (69)

Perform the field redefinition ϕ→ ϕ+β62ϕ
3/Λ2 and obtain the Lagrangian in terms of the

new interpolating field. Compute now the EoM for ϕ from L4 and introduce the solution
on the second operator of L6. Compare the resulting Lagrangians. Compute now the effect
of the field redefinition up to dimension 8. Compute the EoM for ϕ using the full L and
insert the solution back in the second operator of L6. Compare the resulting Lagrangians.

Solution:-

After the field redefinition the Lagrangian goes to

L →− 1

2
ϕ(∂2 +m2)ϕ−

(
λ+ β62

m2

Λ2

)
ϕ4

+
1

Λ2

(
α61 − 4λβ62 −

β2
62

2

m2

Λ2

)
ϕ6 +

1

Λ4

[
(6α61β62 − 6λβ2

62)ϕ
8 +

39

10
β2
62ϕ

5∂2ϕ

]
,

(70)

where we have used integration by parts to prove the following two identities

ϕ4(∂µϕ)(∂
µϕ) = −1

5
ϕ5∂2ϕ, (71)

ϕ3∂2ϕ3 =
9

5
ϕ5∂2ϕ. (72)

The EoM from L are given by

∂2ϕ = −m2ϕ− 4λϕ3 + 6
α61

Λ2
ϕ5 +

β62
Λ2

(3ϕ2∂2ϕ+ ∂2ϕ3). (73)

When inserted in the redundant operator, we obtain

β62
Λ2

ϕ3∂2ϕ→β62
Λ2

ϕ3

[
−m2ϕ− 4λϕ3 + 6

α61

Λ2
ϕ5 +

β62
Λ2

(3ϕ2∂2ϕ+ ∂2ϕ3)

]
=−β62

m2

Λ2
ϕ4 − 4λβ62

1

Λ2
ϕ6 + 6α61β62

1

Λ4
ϕ8 +

24

5
β2
62

1

Λ4
ϕ5∂2ϕ. (74)

Comparing Eq. (74) with Eq (70) we see that the use of EoM correctly recovers the effect
of the field redefinitions at leading order, written in blue in Eq. (74), while the terms
quadratic in β61 come with the incorrect coefficient or are even not present.

A few comments are in order:

• As mentioned, field redefinitions are allowed provided we are computing physical observ-
ables. In this case we can use field redefinitions to eliminate redundant operators from
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the Green’s basis to obtain the physical basis.

• Note that, in the construction of the physical basis we can always use EoM, order by
order in the 1/Λ expansion. We might miss contributions that are generated at higher
orders but we do not care about those because we will start at the next order with the
full Green’s basis (with arbitrary WCs). If we care about the detailed value of the WCs,
for instance if we are matching a full model onto our EFT, as we will describe below, then
we are forced to use field redefinitions (unless quadratic terms are higher order than we
need to consider).

• This result (redundant operators can be reduced via field redefinitions) is not a tree-level
statement but holds to all orders in perturbation theory.

• One can understand the equivalence between the two theories diagrammatically, in which
applying the EoM (or using field redefinitions) can be seen as dressing the external legs
with further interactions. We will give more details below, when we discuss on-shell
matching.

3.2 Redundancies in d = 4: evanescent structures

New redundancies, that allow us to further reduce the operators in our basis, appear in d = 4
dimensions. Examples are Fierz identities or the fact that in 4 dimensions there is a finite
basis of fermion bilinears (similarly for relations with contracted levi-civita tensors). These
properties are however not fulfilled in general d = 4 − 2ε dimensions, generating what are
usually called evanescent operators. These are operators that are formally O(ε) and therefore
are irrelevant for tree-level matching and one-loop RGE calculations but they can hit a UV
pole (only UV poles contribute because they correspond to a local effect) and result in a finite,
rational term with physical effect starting at one loop for finite matching calculations and two
loops for RGEs. There are several ways of dealing with evanescent operators. Similarly, there
is an infinite number of ways of defining the evanescent operators themselves (we can add
an arbitrary O(ε) contribution to them remaining evanescent). These different ways fix the
evanescent scheme. For the moment, we will focus on the simpler effects at one-loop order
and describe a simple way to include them in the finite one-loop matching. We do it with an
example taken from [7].

Consider the following two operators

(Ole)prst = (l̄pγ
µlr)(ēsγµet), (Rle)prst = (l̄per)(ēslt), (75)

where prst are flavour indices, l is the SM lepton doublet and e is the SM charged-lepton
singlet. In 4 dimensions they are related by a Fierz identity but this is no longer true in general
d dimensions so we can define an evanescent operator as follows

(Rle)prst = −1

2
(Ole)ptsr + (Ele)prst, (76)

where the evanescent operator Ele vanishes in 4 dimensions and the above equation defines it
in arbitrary d dimensions.

We need to care about these evanescent structures whenever one of the two operators are
generated but the result is given in terms of the other. This can be because they belong to two
different physical bases and one needs to translate the results of the matching from one basis
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to the other or because one is generated in d dimensions but it is not in the physical basis in 4
dimensions, so the results of the matching are given in terms of the other. Let’s see an example
of the latter case. Indeed, the operator Ole is in the most standard basis for the SMEFT at
dimension 6, the Warsaw basis [8], while Rle is not. Following [7] we consider an extension of
the SM with a heavy copy of the Higgs boson that, for simplicity, only couples to leptons

L = LSM +DµΦ
†DµΦ +M2Φ†Φ− (yprΦel̄pΦer + h.c.). (77)

Integrating out (we will see below how to do it) Φ at tree level we get

(cle)prst =
yprΦe(y

ts
Φe)

∗

M2
, (78)

where cle denotes the WC of Rle and we will denote by Cle the one of Ole. Going to the physical
basis we would then say that

(Cle)prst = −1

2
(cle)ptsr. (79)

However, while this is correct at the tree-level, it loses the information that in d dimensions
it was in fact Rle the operator that was generated, and this has effects at one-loop order.
Indeed, if we were to insert the operator Rle in one-loop diagrams, it would not generate dipole
operators for the leptons, as it does not have enough number of gamma matrices. Ole on the
other hand, has enough gamma matrices and indeed it generates a (spurious in our case) dipole
operator at one loop. The evanescent contribution precisely cancels this spurious contribution
so that the calculations in the EFT reproduce the effect of having generated Rle at tree level.
In order to systematically compute the effect we just need to insert the evanescent operator Ele
in the EFT in all possible one-loop amplitudes, and compute the finite term that arises from
the product of a UV 1/ε pole times the O(ε) contribution of the evanescent operator. Doing
so for the amplitude corresponding to the dipole operator with the hypercharge gauge bosons
is

∆(CeB)pr =
3gY y

ts
e

128π2
(cle)prst. (80)

Thus, we can give the result of the matching in two different (but equivalente ways),

(cle)prst =
yprΦe(y

ts
Φe)

∗

M2 ,

(Cle)prst = 0,

∆(CeB)pr = 0,

 basis in d dimensions, (81)

(Cle)prst = −1
2

yptΦe(y
rs
Φe)

∗

M2 ,

∆(CeB)pr =
3gY y

ts
e

128π2 (cle)prst.

 basis in 4 dimensions, (82)

where we have only included the extra evanescent contribution to the electron-hypercharge
dipole operator when the results are given in the 4-dimensional basis (note that this is, in
principle, independent of whether the matching is performed on-shell or off-shell). There can be
also direct one-loop contributions to this (and other) dipole operator and also other evanescent
contributions. All the relevant evanescent contributions in the SMEFT at dimension 6 and
one-loop order have been computed in [7].
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3.3 Gauge invariance: the background field method

Non-abelian gauge theories introduce an extra complication when computing local contributions
from UV physics (let it be renormalisation or matching the effects of heavy physics at low
energies). The main point is that in order to quantise gauge theories we need to fix the gauge,
after which our theory is no longer gauge invariant, but just BRST invariant. This is enough
to guarantee gauge invariant results for physical observables but not for intermediate, non-
physical objects like counterterms of off-shell Green’s functions. In order to solve this problem,
and simplify our intermediate calculations, we can resort to the background field method. We
will introduce the main ideas here but full details can be found, for instance in [9].

The generating functional of a non-abelian gauge hteory reads

Z[J ] =

∫
DQµ det

[
δGa

δωb

]
exp i

[
S[Q]− 1

2ξ
G ·G+ J ·Q

]
, (83)

where the dot denotes an integral over space-time, Ga is the gauge fixing term (for instance we
can use Ga = ∂µQ

aµ), and the determinant is of the derivative of the gauge fixing action with
respect to the gauge parameter of a gauge transformation

δQa
µ = −fabcωbQc

µ +
1

g
∂µω

a =
1

g
(Dµω)

a. (84)

Let us now define a background field generating functional

Z̃[J,A] =

∫
DQµ det

[
δG̃a

δωb

]
exp i

[
S[Q+ A]− 1

2ξ
G̃ · G̃+ J ·Q

]
, (85)

where the infinitesimal gauge transformation is now

δQa
µ = −fabcωb(Qc

µ + Acµ) +
1

g
∂µω

a =
1

g
(Dµω)

a, (86)

with G̃ = G̃[Q, .A] in general. Making the change of variables Q→ Q− A we can see that

Z̃[J,A] =

∫
DQµ det

[
δG̃′ a

δωb

]
exp i

[
S[Q]− 1

2ξ
G̃′ · G̃′ + J · (Q− A)

]
= e−iJ ·AZ̃ ′[J, 0] = e−iJ ·AZ ′[J ], (87)

where
G̃′[Q,A] = G̃[Q− A,A], (88)

and the prime denotes this new gauge fixing function.
We can now define the associated generator of connected Green’s functions

W̃ [J,A] = −i ln Z̃[J,A] = −J · A+W ′[J ], (89)

with

Q̃ =
δW̃

δJ
= −A+

δW ′

δJ
= −A+Q

′
. (90)

Finally, we can define the corresponding 1PI background field quantum effective action

Γ̃[Q̃, A] = W̃ [J,A]− J · Q̃ = W ′[J ]− J ·Q′
= Γ′[Q] = Γ′[Q̃+ A]. (91)
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In particular
Γ′[A] = Γ̃[0, A]. (92)

Thus, in order to compute the 1PI quantum action, we just need to compute Γ̃[0, A]. Several
comments are in order:

• The gauge choice for Γ̃ and Γ′ are different, but this does not matter for physical observ-
ables.

• When computing Γ̃[0, A] we only integrate over Q and therefore these quantum fields are

the only ones that can appear in loops. Furthermore, we set Q̃ to zero so the quantum
fields Q cannot appear as external particles. The bottom line is that we use S[Q+A] to
compute the Feynman rules and then compute 1PI amplitudes with A as external states
and Q running only in loops. If we were to compute physical amplitudes, A can also run
in bridges (tree level progpagators) stitching 1PI vertices together.

• As we have emphasized, the issue of gauge-fixing is relevant for off-shell, unphysical
objects. If we perform an on-shell matching, using directly physical, on-shell amplitudes,
we do not need to use the background field method to obtain a gauge invariant result.

The main point of this procedure is that, since we don’t need propagators of the background
A fields in order to compute the quantum action, we don’t need to fix the gauge for them. Thus,
we can simply fix the gauge for the quantum fields and leave the background gauge symmetry
unbroken. For instance, if we choose

G̃a = ∂µQ
aµ + gfabcAbµQ

c µ ≡ D̂µQ
aµ, (93)

where the hat denotes covariant derivative with respect to the background gauge field. It can
then be seen that Γ̃[Q,A] is invariant under a background gauge transformation

δAaµ =
1

g
D̂µω

a, (94)

with all other fields (Qa
µ, c

a, ca) transforming in the adjoing under the background gauge trans-
formation (and possible matter fields transforming under the corresponding representation).
All this is straight-forward for ungroken gauge symmetries. Spontaneously broken gauge sym-
metries are trickier, in particular when matching calculations are involved. See Ref. [10] for the
latest on the subject.

What happens if we insist on now using the background field method (or equivalently, if
we use a gauge fixing that is not background field gauge invariant)? What happens is that
the quantum effective action will in general receive non-gauge invariant contributions. These
contributions will be redundant on-shell but have to be maintained in any intermediate off-shell
calculation. As an example, if we use the background field method but choose a gauge-fixing
term of the form

LGF = (∂µG
aµ)2, (95)

that indeed breaks the background gauge symmetry, the one-loop quantum action reads

Γ = −1

4
(F̂ a

µν)
2 +

g2

16π2
CA

1

ε

[
10

3
(F̂ a

µν)
2 − 4gfabcF̂ a

µνÂ
b µÂc ν

]
. (96)
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This contribution is indeed not gauge invariant but the extra term can be written in the
following way

−gfabcF̂ a
µνÂ

b µÂc ν = (F̂ a
µν)

2 + 2Âa νD̂µF̂ a
µν − 2∂µ(Â

a
νF

aµν)
on−shell−→ (F̂ a

µν)
2, (97)

where in the on-shell limit we have used taht the second term vanishes and the third one is a
surface term that does not contribute in perturbation theory.

3.4 Bases for the SMEFT

Obtaining a basis (physical or Green’s, in 4 or d dimensions) is a non-trivial task. It took many
years to get a complete physical basis in 4 dimensions for the SMEFT at mass-dimension 6,
since the initial attempt [11] to the basis that the community has taken as the standard one,
the Warsaw basis [8]. Going from that basis to the corresponding Green’s one took another
decade [12] and it was not until very recently that all the relevant evanescent structures and
contributions, for the reduction of a complete basis in d dimensions were computed in [7].
The development of new methods and the automation via computer codes, like BasisGen [13]
or sym2int [14, 15] has allowed for a much quicker development of higher-dimensional bases,
including [16, 17, 18] at dimension 7, [19, 20] at dimension 8, and [21] at dimension 9.

4 Using EFTs: bottom-up vs top-down

One of the (many) great advantages of EFTs is that they allow to obtain the low energy effects
of heavy physics in a very efficient, two-step, process. In a first step, commonly called the
bottom-up approach, we compute experimental observables in terms of the WCs of the EFT.
Note that this is a fairly model-independent process. Indeed, the EFT is able to capture the
low-energy physical effects of any model that has, as the only light fields and relevant sym-
metries at low energies, the ones of the EFT and arbitrary heavy physics, with a significant
mass gap between the heavy particles and the energies at which we are performing our ex-
perimental measurements. Thus, we can see this bottom-up approach as a very convenient,
model-independent, parametrisation of experimental data.

The second step, called the top-down approach, we compute the WCs of the EFT for specific
full models with heavy particles, in terms of the couplings and masses of the full theory. This
calculation is called matching, as the WCs can be computed by matching certain amplitudes
in the full theory and the EFT. It is sometimes also called integrating out the heavy physics,
as this is what one does explicitly when using the path integral formalism.

4.1 Matching full theories onto EFTs: general ideas

There are several different ways of matching a full theory onto the corresponding EFT. In this
section we are going to focus on the diagrammatic approach, which can itself be performed in
two different ways, off-shell and on-shell.

Off-shell matching, the most commonly performed in the literature, is done by computing
1lPI Green’s functions, with only light particles as external legs, both in the full theory and
the EFT, at the required loop order. Expanding both in ratios of light scales over heavy
masses, and considering arbitrary off-shell kinematics, the difference is local and can therefore
be parametrised by the WCs of local operators in our EFT. It is enough to compute 1lPI Green’s
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functions because this way we are able to reconstruct the light quantum effective action, which
is an intrinsically off-shell object and therefore requires the off-shell matching. Some of the
advantages of this off-shell matching is that the required number of diagrams is relatively small
and that the off-shell kinematics allows for a large degreee of redundancy that provides non-
trivial cross-checks of the results. Fuerthermore, as we will see in a moment, the expansion
by regions method allows us to obtain directly the matching coefficients by computing some
limit (the hard region contribution) of the full theory, without having to do the corresponding
calculation in the EFT. The disadvantages are that a Green’s basis is needed and that the
background field method has to be implemented when gauge theories are present.

We can alternatively perform the matching directly on-shell, so that no redundant operators
need to be considered and the background field method is not required. This is done by
matching all amputated, connected physical (on-shell) amplitudes with light external particles.
The difference between the corresponding amplitudes in the (expanded) full theory and the
EFT is again local and can be parametrised this time in terms of the WCs of a physical basis.
The advantage of not requiring redundant operators is usually countered by the fact that a
much larger number of diagrams (now including 1-particle-reducible ones, with light bridges)
havs to be included and the fact that, even the hard region expansion of the full theory is
non-local, and the non-localities cancel between the calculation in the full theory and the EFT
in a non-trivial way.

4.2 Expansion by regions and locality of the matching conditions

The general idea of EFTs is to perform a Taylor expansion in the (small) ratio of light scales
over heavy ones. In particular, denoting generically with p arbitrary linear combinations of the
external momenta of our light particles and by m their masses, while M stands for the generic
mass of a heavy particle (p ∼ m ≪ M) and k will stand for (combinations of) loop momenta.
The tree level propagator of a heavy particle can then be generically expanded as follows

1

p2 −M2
= − 1

M2

∞∑
n=0

(
p2

M2

)n
. (98)

Now, if the propagator is part of a one-loop diagram, then it involves loop momenta, that run
fron 0 to infinity. Which expansion can we do in that case? The answer is that, in dimensional
regularisation, we can split a momentum integral in the sum of several integrals, each dominated
by a so-called region, in which the integral is divergent, and expanded in a power series in the
corresponding limit. This expansion by regions extends to any loop order but we will see it
explicitly in a very simple example at one-loop order, to simplify the discussion.

Consider the following integral

IF = µ2ε

∫
k

1

k2 −M2

1

k2 −m2
=

i

16π2

{
1

ε
+ 1 + ln

µ2

M2
+

m2

M2 −m2
ln
m2

M2

}
=

i

16π2

{
1

ε
+ 1 + ln

µ2

M2
+

(
m2

M2
+
m4

M4
+ . . .

)
ln
m2

M2

}
, (99)

where in the last line we have expanded, after performing the integral, in the small ration
m2/M2 ≪ 1. The integrand is divergent in two regions,

m ∼ p ∼ k ≪M, soft region, (100)

m ∼ p≪ k ∼M, hard region, (101)

22



where in this particular example we do not have external momenta but they can be incorporated
without problems. The expansion by regions method tells us that we can compute the integral
by considering separately both regions, expanding the integrand in the small ratios, integrating
over the full integration range and adding both integrals. Let us see that indeed this is the
case in our example. Before we use partial fractioning to write our integral in a slightly simpler
form for the different expansions

IF =
µ2ε

M2 −m2

∫
k

(
1

k2 −M2
− 1

k2 −m2

)
. (102)

Exercise 4.1. Starting from Eq. (102) compute the integral to reproduce the result in
Eq. (99).

Solution:-

IF =
µ2ε

M2 −m2

∫
k

(
1

k2 −M2
− 1

k2 −m2

)
=

1

M2 −m2

i

16π2

(
M2

[
1

ε̄
+ 1− ln

M2

µ2

]
−m2

[
1

ε̄
+ 1− ln

m2

µ2

])
=

i

16π2

(
1

ε̄
+ 1 + lnµ2 − M2

M2 −m2
lnM2 +

m2

M2 −m2

[
lnm2 + lnM2 − lnM2

])
=

i

16π2

(
1

ε̄
+ 1 + ln

µ2

M2
+

m2

M2 −m2
ln
m2

M2

)
. (103)

Where we have denoted in blue a term that has been added and subtracted to get the
final result.

We start with the soft region expansion, in which k ∼ m ∼ p≪M .

IsoftF =
µ2ε

M2 −m2

∫
ddk

(2π)d

[(
− 1

M2

)(
1 +

k2

M2
+

k4

M4
+ . . .

)
− 1

k2 −m2

]
=

−i

16π2

m2

M2 −m2

(
1

ε
+ 1 + ln

µ2

m2

)
. (104)

Note that this soft region contribution is in general non-local in the light scales (in this example
in the light mass m but in general external momenta will also appear inside logarithms and
other non-polynomial functions). We now consider the hard region, in which m ∼ p≪ k ∼M

IhardF =
µ2ε

M2 −m2

∫
ddk

(2π)d

[
1

k2 −M2
−
(

1

k2

)(
1 +

m2

k2
+
m4

k4
+ . . .

)]
=

i

16π2

M2

M2 −m2

(
1

ε
+ 1 + ln

µ2

M2

)
. (105)

Note that we now get in general a non-local dependence on the heavy mass M , but the light
scales, including the light masses and external momenta, as they have been expanded out, only
result in a local contribution. In both calculations we have made heavy use of the fact that
scaleless integrals vanish in dimreg.
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Adding both integrals we obtain

IsoftF + IhardF =
i

16π2

{
1

ε
+ 1 +

1

M2 −m2

(
m2 ln

m2

µ2
+M2 ln

µ2

M2

)}
=

i

16π2

{
1

ε
+ 1 + ln

µ2

M2
+

m2

M2 −m2
ln

m

M2

}
= IF . (106)

This result is completely general, the full integral is the sum of the integrals expanded in all the
relevant regions. At one loop we only have two regions, the soft region (that includes in general
the deep IR) and the hard region (that includes the deep UV). At higher loops the different
regions can be more complicated but it is still true that the full integral can be obtained as
the sum of the corresponding regions. The apparent double counting that we might incur in
due to the integration over the full range is not present thanks again to the fact that scaleless
integrals vanish in dimreg.

We are now in a position to sketch the proof that the difference between the full theory
amplitudes and the EFT ones are local and therefore can be matched to the local EFT La-
grangian. Indeed, the soft region corresponds to expanding the integrand in ratios of all scales,
including the loop momenta, over the heavy masses -before the loop integration-. This ex-
pansion precisely reproduces the tree-level expansion of the EFT and therefore the soft region
contribution of the one-loop amplitude in the full theory exactly coincides with the full one-loop
amplitude in the EFT. The difference between the full one-loop amplitude in the full theory
and the one in the EFT thus corresponds to the hard region contribution of the one-loop am-
plitude in the full theory. As we have argued, this one is always local (as we have expanded in
external momenta up to a finite order and it is therefore a polynomial in external momenta,
the contribution of a local operator). This proof extends to higher loop orders. The arguments
is more involved because of the mixed hard/soft contributions at two and higher loop orders.
These mixed contributions correspond to EFT loops to which the lower order WCs contribute,
and are taking into account by matching at lower loop order. This is in a similar spirit to the
non-local subdivergences that are cancelled by lower order counterterms in the renormalisation
process. The net result is that the contribution to the l-loop order matching corresponds, once
the lower order contributions in the EFT from the matching at lower loop orders have been
taken into account, to the all hard region contribution and it is therefore also local. A more
detailed discussion can be found in [22].

Some comments about the expansion by regions are in order and they are already exemplified
in the above example.

• We have seen that the soft region contribution in the full theory corresponds to the full
contribution in the EFT. 5 This is consistent with the expansion by regions in the EFT
itself since, as there are no heavy scales in the EFT, the hard region expansion always
corresponds to scaleless contributions that vanish. Thus, we have in general

IF − IEFT = IsoftF + IhardF − IsoftEFT − IhardEFT = IsoftF + IhardF − IsoftEFT = IhardF . (107)

• The expansion by regions introduces in general spurious 1/ε divergences (that cancel
among the different regions). These can be relevant if we are interested in the divergent

5Technically, this is strictly true if we do the matching in d dimensions. If we match in d = 4 dimensions
then there might be differences between the soft region contribution in the full theory and the EFT calculation.
These differences correspond to an evanescent effect and can in fact be used to compute the relevant evanescent
shifts, as we will describe below in the introduction to on-shell matching.
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parts of our amplitudes. In general, the soft region expansion contains the correct IR poles
in our integral but generate, in general, spurious UV poles. The hard region, instead,
correctly reproduces the UV poles but generate spurious IR poles.

• The UV poles of the EFT are related (in fact identical) to the IR poles in the matching
calculation. Let’s see it in detail. In general the amplitude in the EFT can be written
(before renormalisation) as,

IE =
AE

εUV
+

B

εIR
+ CE =

[
AE

εUV
+

B

εIR
+ CE

]
+

[
AE

εUV
− AE

εIR

]
, (108)

where the first term is square brackets corresponds to the soft contribution and the second
to the hard one (in this case the latter is scaleless and therefor vanishes). In the full theory,
instead, we have

IF =
AF

εUV
+

B

εIR
+ CF =

[
DF

εUV
+

B

εIR
+ CF

s

]
+

[
AF

εUV
− DF

εIR
+ CF

h

]
. (109)

Using now that the soft regions agree in both amplitudes we obtain

AE = DF , CE = CF
s . (110)

The first equality indeed tells us that the UV pole in the EFT (AE) is equal to minus
the IR pole in the hard region contribution of the full theory DF and therefore of the
matching calculation. This can be used to re-sum IR logarithms in the full theory, by
turning them into UV logs in the EFT and use the EFT RGE to re-sum them.

• The UV poles in both theories are in general different and they have to be renormalised
independently.

• We have kept the UV divergences explicit in our previous discussion to understand the
divergence structure of the full and EFT calculations but, when computing the matching,
we should first renormalise (independently) both theories and then subtract only the
renormalised amplitudes. These might still be IR divergent but, as we have seen, we the
IR divergences are identical in both theories and cancel in the matching. Thus, we see
that we can get the matching contributions by computing the hard region contribution
to the amplitude in the full theory, neglecting the 1/ε̄ terms, either because they are UV,
and thus renormalised away, or IR and thus cancelled in the difference.

• Doing the matching by computing the hard region contribution of the amplitudes in
the full theory has the extra advantage that the calculation itself is much easier than
computing the full amplitude. Indeed, at one loop order partial fractioning and ibp
identities allow us to write all amplitudes in terms of a single integral, the tadpole one
defined in Eq. (34). Going to higher loops we need more integrals but still the number
of the required master integrals is much smaller than if we were to compute the full
amplitudes.

• Another effect of this simplified matching procedure is that this method automatically
intertwines the EFT calculation with the one in the full theory. In principle one can do the
matching by computing the complete full theory amplitude, expand in the heavy scales
(after integrating) and subtract the full EFT calculation. In that case both calculations
can be done independently, including different renormalisation schemes, if desired.
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5 Off-shell matching (diagrammatic)

How do we perform diagrammatic off-shell matching in a systematic way? We have to use the
following algorithm, that will be explained and justified in the following sections:

1. Build a Green’s basis. This has to be done only once, and, if you are lucky, someone has
probably done it for you.

2. Compute, at tree level, all the off-shell amplitudes that are needed to fix the WCs of the
EFT (again, this can be done just once per EFT). Since we need to compute only 1lPI
contributions, these correspond simply to the local contributions from the vertices in the
EFT.

3. Compute the hard region (in which all loop momenta and the masses of the heavy particles
are much heavier than the external momenta and light masses) of the one-light-particle-
irreducible (1lPI) contribution to all the relevant amplitudes in the full theory.

4. Equate these amplitudes to the corresponding ones in the EFT computed at tree level,
match independently all different kinematic configurations (imposing momentum conser-
vation) to fix the values of the WCs.

5. Non-trivial checks of the calculation come from the off-shell consistency for different
kinematic configurations and also from gauge invariance (that relates amplitudes with a
different number of particles (in which gauge bosons are replaced with external momenta).

In the following sections we will describe in detail this procedure using a very simple example.
Let us consider the following full theory

Lfull = ψ̄(i/∂ −m)ψ − 1

2
ϕ(∂2 +m2)ϕ− ηψ̄ψϕ− 1

2
Φ(∂2 +M2)Φ− λψ̄ψΦ, (111)

where we assume m≪M and, for simplicity, we have taken the mass of the light fermion and
scalar equal (but this is irrelevant for the discussions below). The idea is to systematically find,
up to one-loop order, the EFT that reproduces the effects of this model at energies much smaller
than M . We have used the word systematic several times already, and indeed the procedure is
systematic, but in our examples we will only do part of the complete matching and running,
focusing on specific groups of operators.

The first step is to build a Green basis, that we will use to match off-shell. The reduction
to the physical basis can be performed after the matching has been done. In the following, we
will discuss the results, leaving most of the detailed calculations as exercises. Let us focus on
the four-fermion operators, up to mass dimension 8. A suitable Green’s basis can be chosen as
follows

LEFT =
cψ4

2Λ2
Oψ4 +

1

Λ4

{[
c
(1)

d2ψ4O(1)

d2ψ4 + h.c.
]
+

3∑
i=2

c
(i)

d2ψ4O(i)

d2ψ4

}
, (112)

where the different operators read

O(1)

d2ψ4 = (ψ̄ψ)(ψ̄∂2ψ),

Oψ4 = (ψ̄ψ)(ψ̄ψ) O(2)

d2ψ4 = (ψ̄ψ)(∂µψ̄∂
µψ),

O(3)

d2ψ4 = (ψ̄∂µψ)(∂
µψ̄ψ).

(113)
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Figure 1: 1lPI contribution at tree level to the ψψ → ψψ amplitude in the full theory.

Recall that, when finding the Green’s basis, we have used integration by parts to reduce op-
erators. Note that this is not a complete Green’s basis, not even at dimensions 6, as we can
always have terms with gamma matrices. It is enough, however, for the scalar theory that we
are considering.

5.1 Tree level matching

In order to match our full theory onto the EFT we can simply compute an off-shell ψψ → ψψ
amplitude. Remember that we only have to consider connected, 1lPI contributions to the
amplitude. The corresponding diagrams are given in Fig. 1. And their contribution reads

iMF = ū3u1ū4u2(−iλ)2
i

(p3 − p1)2 −M2
− (3 ↔ 4)

= ū3u1ū4u2
iλ2

M2

(
1 +

p21 + p23 − 2p1 · p3
M2

+O
(
p4

M4

))
− (3 ↔ 4), (114)

where the −(3 ↔ 4) stands for the contribution of the crossed diagram and in the second line
we have expanded in external momenta over the heavy mass. The result in the EFT reads

iME = iū4u1ū3u2

{
Cψ4 − C

(1)

d2ψ4 [p
2
1 + p22]− (C

(1)

d2ψ4)
∗[p23 + p24]

+ C
(2)

d2ψ4 [p1 · p3 + p2 · p4] + C
(3)

d2ψ4 [p1 · p4 + p2 · p3]
}
− (3 ↔ 4), (115)

where we have reabsorbed the corresponding power of the cut-off in the definition of the (now
dimensionful) WCs

cψ4 ≡ Cψ4Λ2, c
(i)

d2ψ4 ≡ C
(i)

d2ψ4Λ
4. (116)

Equating the coefficient of every kinematic invariant we obtain an over-constrained linear system
of equations, with the unique solution

Cψ4 =
λ2

M2
, C

(1)

d2ψ4 = − λ2

2M4
, C

(2)

d2ψ4 = − λ2

M4
, C

(3)

d2ψ4 = 0. (117)

Exercise 5.1. Match the two amplitudes and show that indeed the system has a unique
solution.
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Solution:-

iME = iū4u1ū3u2

{
Cψ4 − C

(1)

d2ψ4 [p
2
1 + p22]− (C

(1)

d2ψ4)
∗[p23 + p24]

+ C
(2)

d2ψ4 [p1 · p3 + p2 · p4] + C
(3)

d2ψ4 [p1 · p4 + p2 · p3]
}

= ū4u1ū3u2i
{
Cψ4 +

[
C

(3)

d2ψ4 − C
(1)

d2ψ4 −
(
C

(1)

d2ψ4

)∗]
p21 +

[
C

(2)

d2ψ4 − C
(1)

d2ψ4 − (C
(1)

d2ψ4)
∗]p22

− 2
(
C

(1)

d2ψ4

)∗
p23 +

[
C

(2)

d2ψ4 + C
(3)

d2ψ4 − 2
(
C

(1)

d2ψ4

)∗]
p1 · p2

+
[
C

(2)

d2ψ4 − C
(3)

d2ψ4 + 2
(
C

(1)

d2ψ4

)∗]
p1 · p3

+
[
− C

(2)

d2ψ4 + C
(3)

d2ψ4 + 2
(
C

(1)

d2ψ4

)∗]
p2 · p3

}
− (3 ↔ 4), (118)

where in the second equality we have used momentum conservation to eliminate p4 =
p1 + p2 − p3. The term that survives in the limit of vanishing momenta gives

Cψ4 =
λ2

M2
. (119)

Equating the terms proportional to p23 we get

C
(1)

d2ψ2 = − λ2

2M4
. (120)

Equating now the one proportional to p21 we get

C
(3)

d2ψ2 =
λ2

M4
+ C

(1)

d2ψ2 + (C
(1)

d2ψ2)
∗ = 0. (121)

Finally, using the term proportional to p22 we get

C
(2)

d2ψ2 = +C
(1)

d2ψ2 + (C
(1)

d2ψ2)
∗ = − λ2

M4
. (122)

It is easy to see that all other terms are correctly reproduced with these values.

5.2 Tree-level matching (functionally)

As we will discuss elsewhere, matching can be also done functionally in the path integral
formalism. At tree level this is particularly simple, as it just corresponds to computing the
classical EoM for the heavy fields, replacing the solution back in the Lagrangian and expanding
in the heavy scales. Let’s see how this works in our simple example. The EoM for our heavy
field are

(∂2 +M2)Φ = −λψ̄ψ, (123)

with formal solution
Φ = Π(−λψ̄ψ), (124)
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where we have defined the inverse quadratic term

Π ≡ (∂2 +M2)−1 =
1

M2

∞∑
n=0

(−1)n
(
∂2

M2

)n
. (125)

Inserting the solution back in the Lagrangian we get,

L → λ2

2
(ψ̄ψ)Π(ψ̄ψ) + . . . =

λ2

2

[
(ψ̄ψ)2

M2
− (ψ̄ψ)∂2(ψ̄ψ)

M4
+ . . .

]
. (126)

The dots in the first equality corresponds to the original Lagrangian involving only light fields
and the ones on the second equality correspond to higher-dimensional operators. Expanding the
derivatives we can check that the resulting effective Lagrangia agrees with the one we obtained
with our diagrammatic calculation.

5.3 One-loop running

Once we have computed the tree level matching, we are going to compute the one-loop running
in the EFT. We do this, instead of going directly to the one-loop matching because of several
reasons. The first one is that we can compute the one-loop running of the EFT independently
of any full theory that completes it in the UV. Second, when the relevant scales (matching
and experiment) are wildly separated, large logarithms can disrupt the fixed-order perturbative
expansion and we need to use one-loop RGEs in connection with tree-level matching to complete
the leading order (LO) in the RGE-improved perturbative expansion (more on this below).
Finally, the one-loop calculation of the RGEs is similar in spirit to the finite one-loop matching
but simpler, as we only need to match the divergent pieces and there are no relevant evanescent
effects to worry about. In order to simplify the discussion, we will focus on the fermionic EFT
up to mass-dimension 6 operators. Thus, the relevant part of our EFT Lagrangian reads

LEFT = Ld≤4 +
C

2
(ψ̄ψ)2, (127)

where recall that [C] = −2. We want to compute the beta function for C so we need to
renormalise the four-fermion operator itself. For that, we need to compute the divergences
appearing, again, in ψψ → ψψ scattering. Note that, since we want to compute the effect up
to dimension 6, we can only have one insertion of C. The relevant diagrams (the crossed ones
are not explicitly displayed) are shown in Fig. 2.

Let’s compute them. Since we are only interested in the UV divergences at mass dimension
6 we can expand in all the light scales (light mass m and external momenta) which, in practice
means neglecting them. Setting to zero exernal momenta and the light masses we obtain,

iMa =
i

16π2ε
(−2η2C) ū4u2ū3u1 + finite,

iMb =
i

16π2ε

(
η2C

2

)
ū4γ

µu2ū3γµu1 + finite,

iMc =
i

16π2ε

(
−η

2C

2

)
ū4γ

µu2ū3γµu1 + finite. (128)

Thus, the total divergence reads

iMdiv = iMadiv − (3 ↔ 4) =
i

16π2ε
(−2η2C) ū4u2ū3u1 − (3 ↔ 4). (129)
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Figure 2: Contribution to the ψψ → ψψ amplitude in the EFT (crossed diagrams are not
explicitly shown).

Before absorbing this divergence in the corresponding counterterm we consider the divergence
corresponding to the kinetic term. In this case, since the contribution is proportional to p2,
we cannot set to zero external momenta, but compute up to this order in the corresponding
expansion. Let’s do the calculation (note that we can neglect the masses, since we are only
interested in the leading contribution to the kinetic term)

= (−iη)2
∫

dd k

(2π)d
i

k2
i(/k + /p)

(k + p)2
=

i

16π2ε

(
η2

2

)
/p+ finite. (130)

The original plus divergent Lagrangian fixes the counterterms and, therefore, the beta functions.

L =

(
1 +

η2

2

1

16π2ε

)
ψ̄i/∂ψ +

C

2

(
1− 2η2

1

16π2ε

)
(ψ̄ψ)2 + . . .

→ ψ̄i/∂ψ +
C

2

(
1− 3η2

1

16π2ε

)
(ψ̄ψ)2 + . . . , (131)

where, in the second line, we have canonically normalised the divergent Lagrangian so that
we do not have to deal explicitly with wave-function renormalisation constants. The field
redefinition needed to canonically normalise is

ψ →
(
1− η2

4

1

16π2ε

)
ψ. (132)
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Once the divergent Lagrangian has been canonically normalised, the divergence in the four-
fermion operator is parametrised by

C ′ = −3Cη2

16π2
, (133)

and therefore the corresponding beta function reads,

Ċ = −2C ′ =
6η2C

16π2
=

3η2C

8π2
. (134)

We can integrate this equation to fixed one loop order to obtain the leading logarithmic ap-
proximation

C(µIR) = C(µUV) +
Ċ(µUV)

2
ln
µ2
IR

µ2
UV

= C +
3η2C

16π2
ln
µ2
IR

µ2
UV

, (135)

where we have used the fact that the beta function has been computed to one loop order and
all the parameters on the right hand side of the last equality are evaluated at the UV scale
µUV.

5.3.1 Resumming logarithms and RGE-improved perturbation theory

As we have seen in the previous section, the calculation of the beta function allows us to relate
the WC at one scale with the corresponding value of the WC at another scale. RGEs can
actually do more for us than just reproducing this relation to fix order in the loop expansion.
We can use it to actually resum, to all loop orders, contributions that are logarithmically
enhanced. Let’s see an example of how this can be done. The one-loop beta function for the η
coupling reads

η̇ =
5

16π2
η3, (136)

which can be solved to give the value of the coupling at an arbitrary scale µ in terms of a UV
scale, that we will denote here Λ, in the form

η2(µ) =
η2(Λ)

1− 10
16π2η2(Λ) ln

µ
Λ

. (137)

We can now write a differential equation for C as follows

d lnC

d ln η
=

d lnC

d lnµ

(
d ln η

d lnµ

)−1

=
6

5
, (138)

which can be solved as follows

C(µ) = C(Λ)

(
η2(µ)

η2(Λ)

) 3
5

= C(Λ)

(
1− 10

16π2
η2(Λ) ln

µ

Λ

)−3/5

=
λ2

M2

(
1 +

3

16π2
η2 ln

µ2

Λ2
+ . . .

)
. (139)

The important point is that by computing the one-loop beta functions, we have been able to
include all loop order contributions of the form (α ln)n, with n an arbitrary integer (n greater
than 1 appears at higher than 1 loop) and α = η2/(16π2). Higher loop effects that are not
included in this calculation are of the form (α)m(α ln)n, which can be obtained by computing the
corresponding beta functions at order m+1 loops. This constitutes the so-called RG-improved
perturbation theory, in which the different orders are, symbolically, of the form
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• Leading order (LO). Resums all terms of the form (α ln)n and cam be obtained by using
the one-loop beta functions, in connection with the tree level matching conditions.

• Next-to-leading order (NLO). Resums all terms of the form α(α ln)n and cam be obtained
by using the two-loop beta functions, in connection with the one-loop matching conditions.

• . . . .

This RG-improved perturbation theory re-organises the perturbative expansion in such a way
that it is well behaved when α ≪ 1 but there is a large hierarchy in scales such that α ln ∼ 1.
In this case, fixed order perturbation theory would have a very poor convergence behaviour
and would not be predictive.

5.3.2 Operator mixing

In our previous example the divergence parametrised by Oψ4 vanished if the operator itself was
not present, i.e. C ′ ∝ C. There are cases, however in which there is a divergence parametrised
by a certain operator even in the absence of this operator. This gives rise to the so-called
operator mixing (one operator induces another via renormalisation). Let us extend slightly our
previous example, starting from the following effective Lagrangian

LEFT = −1

2
ϕ(∂2+m2

ϕ)ϕ+ ψ̄(i/∂−mψ)ψ−ηψ̄ψϕ+
Cs
2
ψ̄ψψ̄ψ+

Cv
2
ψ̄γµψψ̄γµψ+

Ct
2
ψ̄σµνψψ̄σµνψ,

(140)
where we have defined σµν ≡ (i/2)[γµ, γν ]. This Lagrangian is the boundary condition for
our RGEs. It should be understood as the Lagrangian written in terms of renormalised WCs
at a certain renormalisation scale. The beta functions give the precise dependence on this
renormalisation scale and allow us to compute, via the solution of the RGEs, the renormalised
WCs at any other scale.

The beta functions can be computed following the procedure explained above. The result
is

16π2βm2
ϕ
= 4η2(m2

ϕ − 6m2
ψ), (141)

16π2βmψ = mψ[3η
2 +m2

ψ(6Cs − 8Cv − 24Ct)], (142)

16π2βη = η[5η2 +m2
ψ(18Cs − 24Cv − 72Ct)], (143)

16π2βCs = 6η2Cs, (144)

16π2βCv = 12η2Ct, (145)

16π2βCt = 2η2(Cv + Ct). (146)

Exercise 5.2. Reproduce the above results using MatchmakerEFT [23].

These results allow us to make several interesting points:

• We see operator mixing at work in βCv and βCt . If, at certain scale, we have Cv ̸= 0 and
Ct = 0, then the solution of the RGES at one loop will induce a non-vanishing value of
Ct at any other scale. We say that Ct = 0 is not radiatively stable (at one-loop order).
Interestingly, the opposite boundary condition, Cv = 0, Ct ̸= 0, generates a non-zero
value for Cv and induces one-loop corrections to Ct.
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Figure 3: 1lPI contribution at one loop order to the ψψ → ψψ amplitude in the full theory.
Only contributions proportional to λ4 are considered. There are two diagrams of the last type
and crossed terms have not been explicitly included.

• Several beta functions are proportional to the coupling itself. In general this does not
need to be the case, as we can see in the case of m2

ϕ or Cv but in many cases this is
enforced by a symmetry reason. In particular, for the case of mψ chiral symmetry ensures
that corrections to mψ have to be proportional to mψ itself, as it is the only parameter
that breaks the symmetry. Similarly, η is the only parameter in the Lagrangian that
breaks the ϕ→ −ϕ symmetry.

• Dimensional analysis proves powerful here again. We can see, in the beta functions of η
and mψ that higher-dimensional operators can contribute to (the beta function and, as we
will see below to matching conditions) lower dimensional ones, multiplied by dimensionful
scales, which can be (light) masses or cubic scalar interactions. Similarly, eventhough
we don’t see this in the example above, in general the product of operators of dimension
higher than 4 renormalises operators of even higher dimension. For example, the insertion
of two operators of dimension 6 will in general renormalise operators of dimension 8 and
so on.

5.4 One-loop matching

Let us now move on to discuss one-loop matching. We will do it, again, using our simple
example, and restricting ourselves only to part of the matching. In particular, we will consider
the dimension 6 contribution to Oψ4 proportional to λ4. We will follow the efficient matching
procedure by simply computing the hard region contribution to the corresponding amplitudes
in the full theory. The relevant diagrams, up to crossing of the final particles, are presented
in Fig. 3. Let us compute the hard region contribution to each of the amplitudes in turn. At
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mass-dimension 6 we can again neglect all external momenta and light masses.

= (−iλ)4
∫
k

ū3
i/k

k2
u1ū4

−i/k

k2
u2

i2

(k2 −M2)2

= −λ4ū3γαu1ū4γβu2
∫
k

kαkβ

k4(k2 −M2)
, (147)

= (−iλ)4
∫
k

ū3
i/k

k2
u1ū4

i/k

k2
u2

i2

(k2 −M2)2

= λ4ū3γ
αu1ū4γ

βu2

∫
k

kαkβ

k4(k2 −M2)
, (148)

= 0 (scaleless), (149)

2× = 2× (−iλ)4
−i

M2

∫
k

ū3
i/k

k2
i/k

k2
u1ū4u2

i

k2 −M2

= −2λ4

M2
us

∫
k

1

k2(k2 −M2)
= −2λ4

M2
us

∫
k

1

M2

[
1

(k2 −M2)
− 1

k2

]
= − i

16π2

2λ4

M2
us

[
1

ε̄
+ 1 + ln

µ2

M2

]
, (150)

where we have defined the following bispinor

us ≡ ū3u1ū4u2. (151)

Thus, we have

iMF

∣∣∣ren
hard

= − 2iλ4

16π2M2

(
1 + ln

µ2

M2

)
us. (152)

As usual, we also need to canonically normalise the kinetic term so we also compute the
contribution to the two point function (proportional to /p). In order to get some practice,
even if we do not need it for our calculation, we are going to also consider the contribution to
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the mass term. The only contribution reads∣∣∣
hard

= (−iλ)2
∫
k

i

(k − p)2 −M2

i(/k +m)

k2 −m2

= λ2
∫
k

1

k2 −M2

[
1− p2 − 2p · k

(k − p)2 −M2

]
/k +m

k2

[
1 +

m2

k2
+
m4

k4
+ . . .

]
= λ2

∫
k

/k +m

k2(k2 −M2)

[
1 +

2p · k
k2 −M2

]
+O(p2,m2)

= λ2
∫
k

[
m

k2(k2 −M2)
+

2p · k/k
k2(k2 −M2)2

]
→ λ2

∫
k

[
m

k2(k2 −M2)
+

2

D

/p

(k2 −M2)2

]
= λ2

∫
k

[
m

M2

(
1

k2 −M2
− 1

k2

)
+

2

D

D − 2

2M2

/p

k2 −M2

]
=

iλ2

16π2

(
1

ε̄
+ 1 + ln

µ2

M2

)[
1

2

(
1− ε

2

)
/p+m

]
=

iλ2

16π2

[(
1

2ε̄
+

1

4
+

1

2
ln

µ2

M2

)
/p+

(
1

ε̄
+ 1 + ln

µ2

M2

)
m

]
. (153)

As promised, the hard contributions are local, and can be parametrised by the following
Lagrangian (neglecting divergent terms that are, either MS-barred away if they are of UV origin
or cancelled in the matching if they are IR)

LEFT = ψ̄[Ki/∂ − Cm]ψ +
Cψ4

2
ψ̄ψψ̄ψ + . . . , (154)

where

K = 1 +
λ2

16π2

(
1

4
+

1

2
ln

µ2

M2

)
, (155)

Cm = m

[
1 +

λ2

16π2

(
1 + ln

µ2

M2

)]
, (156)

Cψ4 =
λ2

M2

[
1− λ2

16π2

(
2 + 2 ln

µ2

M2

)]
. (157)

Canonically normalising via

ψ → 1− λ2

16π2

(
1

8
+

1

4
ln

µ2

M2

)
ψ, (158)

we get

K → 1, (159)

Cm → m

[
1 +

λ2

16π2

(
3

4
+

1

2
ln

µ2

M2

)]
, (160)

Cψ4 → λ2

M2

[
1− λ2

16π2

(
5

2
+ 3 ln

µ2

M2

)]
. (161)

Several comments are in order.
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• Note that the one-loop correction to the fermion mass is proportional to the fermion mass
itself. The reason is that, in the limitm = 0 there is a higher chiral symmetry, under which
the left and right handed components of ψ transform differently. Since the fermion mass
is the only parameter than breaks this symmetry, all corrections must be proportional to
the mass itself. We say the fermion mass has a chiral protection. This chiral protection is
behind the solution of the hierarchy problem in supersymmetric theories (together with
a soft breaking of supersymmetry).

• Our results for the WCs depend explicitly on µ, reflecting the fact that they are MSbar-
renormalised WCs (defined at the scale µ). As usual, the renormalised scale, µ, is arbi-
trary, but it is usually chosen at or near the mass threshold we are integrating out (M
in our case) to minimise the logs appearing in the expression. We can however keep the
explicit dependence on µ. In the next section we discuss how this µ dependence is com-
patible with the beta function of the corresponding WCs, once all implicit dependences
are included.

5.4.1 RGEs and µ-dependence on the matching results

We have obtained in our previous calculation that, up to one loop order,

Cψ4 =
λ2

M2

[
1− λ2

16π2

(
5

2
+ 3 ln

µ2

M2

)]
, (162)

where all parameters in this expression are MSbar-renormalised parameters (up to one-loop
order), defined at the renormalisation scale µ. In the previous section, we saw that the beta
function for this WC is

Ċψ4 =
dCψ4

lnµ
=

6

16π2

η2λ2

M2
. (163)

However, the term in front of ln(µ/M) in Eq. (162) is

− 6

16π2

λ4

M2
, (164)

which does not agree with the expectation from the EFT. The reason is that we have not
computed the full dependence on the renormalisation scale of the WC in Eq. (162). The
parameters λ and M are, as emphasized, renormalised parameters that also depend on µ. The
full dependence is thus

Ċψ4 =
2λλ̇

M2
− λ2 ˙(M2)

M4
− 6

16π2

λ4

M2
. (165)

We need to compute the one-loop beta functions of λ and M2 in the full theory. Let us give
the result for the relevant diagrams

=
2iλ2

16π2ε
(p2 − 6m2) + . . . , (166)

+ =
iλ

16π2ε
(η2 + λ2) + . . . , (167)

+ =
i/p

16π2ε

1

2
(η2 + λ2) + . . . , (168)
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The original plus divergent Lagrangian therefore reads,

L =

(
1 +

1

16π2ε

η2 + λ2

2

)
ψ̄i/∂ψ +

(
1 +

2λ2

16π2ε

)
1

2
(∂µΦ)

2 − 1

2
M2Φ2 − λ

(
1− η2 + λ2

16π2ε

)
ψ̄ψΦ + . . . ,

→ ψ̄i/∂ψ +
1

2
(∂µΦ)

2 −
(
1− 2λ2

16π2ε

)
1

2
M2Φ2 − λ

(
1− 1

16π2ε

3η2 + 5λ2

2

)
ψ̄ψΦ + . . . , (169)

where in the second line we have canonically normalised. From this we can read off the beta
functions for λ and M2,

Ṁ2 = −2(M2)′ =
4λ2

16π2
M2, (170)

λ̇ = −2λ′ =
(3η2 + 5λ2)λ

16π2
. (171)

We can now put everything together to obtain

Ċψ4 =
2λλ̇

M2
− λ2 ˙(M2)

M4
− 6

16π2

λ4

M2

=
1

16π2

λ2

M2

[
2(3η2 + 5λ2)− 4λ2 − 6λ2

]
=

6

16π2

λ2η2

M2
, (172)

which is fully consistent with the beta function as computed in the EFT itself, Eq. (163).

5.4.2 One-loop matching: complete calculation in the full theory and in the EFT

In the previous sections we have computed the one-loop matching conditions directly from the
hard region contribution of the corresponding amplitudes in the full theory. One can, of course,
take the longer route of computing the full amplitude in both the full theory and in the EFT
and subtract the two. This procedure involves computing the complete one-loop amplitude
in the full theory and then (after integration) expand in the heavy scaler. We then have to
compute the complete one-loop amplitude in the EFT and subtract the two. Why would one
want to go through the trouble of matching onto the EFT if we have already computed the full
theory amplitude? Usually we do not, and this is why we use the expansion in the hard region
in the firs place, but sometimes we have to, because the presence of disparate scales requires
us to resum the corresponding logarithms using the EFT RGEs. We will briefly mention an
example below. Note that, even if this resummation was not needed, it still can make sense
to expand the full theory amplitude and match it to the EFT. The reason is that, in order to
compute the matching, there is only a finite number of amplitudes we need to compute and,
once we have the EFT with the matched WCs, we can compute any other physical process in
the simpler context of the EFT itself.

In any case, in this section we are going to give the results of this process for the one-loop
matching of the O(λ4) contribution to Cψ4 . We do this for pedagogical reasons, to show that
our expectation in terms of cancellation of non-local terms in the light scales cancel in the
matching are indeed fulfilled. Let us define the following two bi-spinors

us ≡ ū3u1ū4u2, uv ≡ ū3γ
µu1ū4γµu2. (173)
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As usual we leave the crossed (3 ↔ 4) contribution implicit. We obtain

=
iλ4

16π2M2

[
us
m2

M2

(
ln
M2

m2
− 2

)
+ uv

(
1

4
+

1

4

m2

M2
(3− 2 ln

M2

m2

)]
+ . . . , (174)

=
iλ4

16π2M2

[
us
m2

M2

(
ln
M2

m2
− 2

)
− uv

(
1

4
+

1

4

m2

M2
(3− 2 ln

M2

m2

)]
+ . . . , (175)

=
iλ4

16π2M2

[
us

(
−4

m2

M2

)(
3

ε̄
+ 1 + 3 ln

µ2

m2

)]
+ . . . , (176)

2× =
iλ4

16π2M2

[
us

(
−2

ε̄
− 2− 2 ln

µ2

m2
+
m2

M2

(
6 ln

M2

m2
− 4

))]
+ . . . . (177)

Adding everything together we get

iMF =
i

16π2

2λ4

M2
us

[
−1

ε̄
− 1− ln

µ2

M2
+
m2

M2

(
−6

ε̄
− 6 ln

µ2

m2
− 6 + 4 ln

M2

m2

)]
+ . . . . (178)

Similarly, the two point function receives a contribution to the kinetic term that reads

=
i

16π2

λ2

2
/p

(
1

ε̄
+

1

2
+ ln

µ2

M2

)
+ . . . . (179)

Let us now move to the EFT side. The corresponding diagrams and their result are

+ =
2iC2

ψ4m2

16π2
us

[
1

ε̄
+ ln

µ2

m2

]
+ . . . , (180)

= −
4iC2

ψ4m2

16π2
us

[
3

ε̄
+ 1 + 3 ln

µ2

m2

]
+ . . . , (181)

2× =
2iC2

ψ4m2

16π2
us

[
3

ε̄
+ 1 + 3 ln

µ2

m2

]
+ . . . . (182)

Adding everything together we get

iME = − 2iλ4

16π2

m2

M4
us

[
2

ε̄
+ 1 + 2 ln

µ2

m2

]
+ . . . . (183)

There is no contribution to the fermion kinetic term in the EFT at the required order. Renor-
malising all the relevant amplitudes (all divergences have a UV origin, as IR ones are regulated
by the external momenta or masses) and subtracting, we obtain renorm.

F

−

 renorm.

E

=
i

16π2
us

2λ4

M2

[
−1− ln

µ2

M2
+
m2

M2

(
−5− 4 ln

µ2

M2

)]
+ . . . ,

(184)( )renorm.
F

−
( )renorm.

E
=

i

16π2
us/p

λ2

2

[
1

2
+ ln

µ2

M2

]
+ . . . , (185)
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which completely agree, at dimension 6, with or previous alculation, Eqs. (155-157).
As usual, several comments are in order. Let us look a bit more in detail at the ψψ → ψψ

amplitudes in the full and effective theories, 
F

=
i

16π2

2λ4

M2
us

[
−1

ε̄
− 1− ln

µ2

M2
+
m2

M2

(
−6

ε̄
− 6 ln

µ2

m2
− 6 + 4 ln

M2

m2

)]
+ . . . ,

(186) 
E

− 2iλ4

16π2

m2

M4
us

[
2

ε̄
+ 1 + 2 ln

µ2

m2

]
+ . . . . (187)

Now our comments:

• Note that in the EFT we need two insertions of Opψ4 so, since we are using a mass-
independent renormalisation scheme, we know directly that the contribution is going to
be dimension 8.

• UV divergences are different in the full theory and in the EFT, both at mass-dimension
6 and mass-dimension 8. This is expected, as both theories are different in the UV and
they renormalise differently.

• At mass-dimension 8 we find in both amplitudes a non-local dependence on the light mass
m. This is an IR effect, that should be identical in both theories and indeed we see that
the dependence on lnm2 is identical in both and cancels in the difference, so that the
WCs are local in all the IR (light) scales.

5.4.3 Mass-independent vs cut-off renormalisation schemes

We have seen how a mass-independent renormalisation scheme allows us to use a purely di-
mensional power counting method. Indeed, if we used a different regulator that introduced
scales in the integration process, we would break the perturbative expansion based on the mass
dimension of the different operators. This example has been taken from [24]. Consider the
following effective Lagrangian

L = −4GF√
2
VuiV

∗
ui(ūγ

µPLqi)(q̄iγµPLu) + . . . (188)

This term induces a one-loop contribution to the ZuLūL coupling of the form

∼ I6 ∼
1

M2
W

∫
d4k

(2π)4
1

k2
∼ Λ2

M2
W

∼ O(1), (189)

where in the last identity we have used the fact that the physical cut-off should be of the same
order as the W mass. A similar operator of mass-dimension 8 (with 2 extra derivatives) would
contribute

I8 ∼
1

M2
W

∫
d4k

(2π)4
1

k2
k2

M2
W

∼ Λ4

M4
W

∼ O(1). (190)
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Thus, we see that, at the loop level, a regularisation scheme that is not mass independent can
mess up with the operator dimensions and the contribution of higher-dimensional operators is
not suppressed with respect to the one of lower-dimensional ones. The equivalent results in a
mass-independent scheme would be

I6 ∼
1

M2
W

∫
k

1

k2
∼ m2

M2
W

(
a+ b ln

µ2

M2
W

)
≪ 1, (191)

I8 ∼
1

M4
W

∫
k

∼ m4

M4
W

(
a′ + b′ ln

µ2

M2
W

)
≪ I6 ≪ 1. (192)

It is therefore clear that one should use in general a mass-independent regularisation scheme
when using EFTs.

The problem with mass-independent regularisation schemes is that they do not decouple.
In particular, the beta functions are mass independent and therefore heavy masses contribute
to the running just as much as light ones. Indeed, in QED we have, for the one-loop beta
function of the coupling constant

βMS(e) =
e3

12π2
, (193)

βmom.(e) =
e3

2π2

∫ 1

0

dx x(1− x)
µ2x(1− x)

M2 + µ2x(1− x)
∼

 e3

12π2 , M ≪ µ,

e3

12π2
µ2

5M2 , µ≪M.
, (194)

where mom. stands for momentum substraction at a scale µ, which is a mass-dependent regu-
larisation scheme and indeed decouples.

The solution is however at our hand. We can, and should, use a mass-independent scheme
and everytime we cross a physical threshold (the mass of a particle) we decouple it by hand by
matching the theory to an EFT in which that particle is not present.

6 When EFT is the only way

Even if we are working with renormalisable theories in which we can compute any physical
observable at any loop order by renormalising our theory with a finite number of cournterterms,
we might be forced to use EFTs to reliably compute certain observables. This example is taken
from [25]. Consider the following renormalisable Lagrangian

L = −1

2
ϕ(∂2 +m2)ϕ− 1

2
Φ(∂2 +M2)Φ− η

4!
ϕ4 − κ

4
ϕ2Φ2. (195)

We want to compute ϕϕ → ϕϕ scattering at threshold. We will give only the results here, full
details of the calculation can be found in [25]. The contribution is

3× =
3i

32π2
η2
(
1

ε̄
+

2

3
+ ln

µ2

m2

)
, (196)

3× =
3i

32π2
κ2
(
1

ε̄
+ ln

µ2

m2

)
. (197)
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Thus, the total, up to one-loop order, amplitude reads, after renormalisation

iMF = −iη +
i

16π2

[
η2
(
1 +

3

2
ln
µ2

m2

)
+ κ2

3

2
ln

µ2

M2

]
. (198)

The important point is that, if m≪M , there is no choice of µ that makes all logarithms small.
Thus, even if

η2

16π2
≪ 1,

κ2

16π2
≪ 1, (199)

if
η2

16π2
ln
M2

m2
∼ κ2

16π2
ln
M2

m2
∼ O(1), (200)

then the perturbative expansion breaks down (if only one of the terms is order one then in this
particular case we could choose µ to make the relevant large log vanishing but the problem
would arise at higher loops and in general theories is present already at one loop order).

Let us see how, using the EFT approach, we can resum the large logs to all orders and get
a result that is well behaved perturbatively. The relevant effective Lagrangian reads

LEFT = −1

2
ϕ(∂2 +m2)ϕ− C

4!
ϕ4 + . . . . (201)

The matching, up to one loop gives (no correction to the kinetic term up to this order), reads

C ≡ C(µM) = η(µM)− 3

2

1

16π2
κ2(µM) ln

µ2
M

M2
≡ η − 3

2

1

16π2
κ2 ln

µ2
M

M2
, (202)

where we have explicitly shown that all our WCs are renormalised at the matching scale µM
and implicitly denoted the renormalised WCs without an explicit scale dependence as evaluated
at such scale. We can choose µM ∼M to ensure that the log is small. We can now compute C
at any other lower scale by using its beta function,

Ċ = 3
C2

16π2
⇒ C(µL) =

C

1− 3
2

1
16π2C ln

µ2L
µ2M

, (203)

where by solving the RGE exacly we have resummed all powers of C × ln. Computing now the
amplitude in the EFT at the scale µL we get

iME = −iC(µL) +
i

16π2
C2(µL)

(
1 +

3

2
ln
µ2
L

m2

)
, (204)

in which the log is also small provided we choose µL ∼ m. We have used the EFT approach to
split a two-scale problem into two single-scale calculations, connected by the RGE in the EFT
that allows us to sum the large logs to all orders in perturbation theory. Indeed, if we expand
our result in the EFT we get back the fixed order result we computed before. Let us see it.
The expanded (to one-loop) solution to the RGE reads

C(µL) =
C

1− 3
32π2C log

µ2L
µ2M

= C +
3

32π2
C2 log

µ2
L

µ2
M

+ . . .

= η +
3

2

1

16π2

[
η2 log

µ2
L

µ2
M

− κ2 log
µ2
M

M2

]
+ . . . , (205)
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where in the last line we have replaced C for its value at the matching scale up to one-loop
order. We can replace this in the expression for the EFT amplitude to obtain

iME = −iC(µL) +
i

16π2
C(µL)

2

(
1 +

3

2
ln
µ2
L

m2

)
= −iη − i

3

2

1

16π2

[
η2 ln

µ2
L

µ2
M

− κ2 ln
µ2
M

M2

]
+

i

16π2
η2
(
1 +

3

2
ln
µ2
L

m2

)
= −iη +

i

16π2

[
η2
(
1 +

3

2
ln
µ2
M

m2

)
+ κ2

3

2
ln
µ2
M

M2

]
, (206)

which agrees with our one-loop fixed order calculation.
Recall what we discussed about RGE resummation of logs and RG-improved perturbation

theory. Let us consider the case in which

η2

16π2
∼ κ2

16π2
≪ 1, but

η2

16π2
ln
m2

M2
∼ O(1). (207)

We would then get the leading order approximation (LO) by matching at tee-level, running at
one loop and computing the amplitude in the EFT at tree level, so that the amplitude reads

iMLO
E = −iC(µL) = −i

η

1− 3
32π2η ln

µ2L
µ2M

. (208)

NLO would involve one loop matching at the scale µM , which we have actually already done
in Eq. (202), two loop running from µM down to µL (that we have not done) and one loop
amplitude in the EFT, again done up to this order in Eq. (204). Let us, without actually
computing the two loop beta functions, show how the full NLO calculation works. Let us
assume 6 that the two loop running of C4 can be written, up to two loop order, as follows

Ċ =
b0

16π2
C2 +

b1
(16π2)2

C3, (209)

where the beta function, up to two loops reads 7

b0 = 3, b1 = −17

3
. (210)

Since there are several couplings involved in the calculation, we have explicitly included a factor
of 1/(16π2) to keep track of the loop order. The large log condition therefore reads

L̂ ≡ 1

16π2
L ≡ 1

16π2
ln
µ2
M

µ2
L

∼ O(1), large log condition, (211)

where we have denoted the large log by L. We can iteratively solve the corresponding RGE to
find, up to two loop order

C(µL) =
C

1− b0
2
CL̂− b1

2
C2 L̂

16π2

, (212)

6In fact, this is exactly true if we neglect higher-order effects, coming from dimension 6 operators into
dimension 4 ones. This is an order m2/Λ2 that we neglect here.

7We thank Javier Fuentes-Mart́ın for providing the two loop beta function.
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where we see that the correction proportional to b0, the LO one, is order one, whereas the one
proportional to b1 has a one-loop 1/16π2 suppression. Let us now put everything together. The
one-loop matching gives

C = η − 3κ2lM
2

1

16π2
, (213)

where we remind the reader that renormalised quantities for which we do not explicitly show
the renormalisation scale are evaluated at the matching scale µ = µM and we have defined

lM ≡ ln
µ2
M

M2
. (214)

This is a small logarithm (provided we choose µM ∼ M) and therefore the term proportional
to it has a genuine one-loop 1/16π2 suppression with respect to the first term. Replacing this
expression into the solution of the two-loop RGE, Eq. (212) we have

C(µL) =
η − 3κ2lM

2
1

16π2

1− b0
2

(
η − 3κ2lM

2
1

16π2

)
L̂− b1

2
η2

16π2 L̂

=
η − 3κ2lM

2
1

16π2

1− b0
2
ηL̂+

(
b0
2

3κ2lM
2

− b1
2
η2
)

1
16π2 L̂

,

=
η

1− b0
2
ηL̂

−

(
1− b0

2
ηL̂
)

3κ2lM
2

+ η
(
b0
2

3κ2lM
2

− b1
2
η2
)
L̂(

1− b0
2
ηL̂
)2 1

16π2
. (215)

Inserting this in the expression for the EFT amplitude we then have

MNLO
E = −C(µL) + C2(µL)

(
1 +

3

2
lm

)
1

16π2

= − η

1− b0
2
ηL̂

+


(
1− b0

2
ηL̂
)

3κ2lM
2

+ η
(
b0
2

3κ2lM
2

− b1
2
η2
)
L̂(

1− b0
2
ηL̂
)2 +

(
η

1− b0
2
ηL̂

)2(
1 +

3

2
lm

) 1

16π2
,

(216)

where we have defined

lm ≡ ln
µ2
L

m2
, (217)

which, again, is not a large logarithm. The NLO correction, in curly brackets, has a genuine
1/16π2 suppression.
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