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José Santiago∗
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1 Exercises

Exercise 1.1. Argue by dimensional analysis that all scaleless integrals except, possibly the
following one, ∫

k

1

k4
=

i

16π2

(
1

εUV

− 1

εIR

)
= 0, (1)

are identically zero. Using the identity

1

k4
=

1

k2(k2 −M2)
− M2

k4(k2 −M2)
(2)

split the integral in Eq. (1 ) in two separate integrals, with the integrands in the previous
identity, and discuss their UV and IR divergences. Compute them using dimreg and prove
the identity in (1). You can use the general result

In,m ≡
∫
k

1

(k2)n
1

(k2 −M2)m
=

(−1)n+mi

(4π)2−ε(M2)n+m−2+ε

Γ(n+m− 2 + ε)Γ(2− n− ε)

Γ(m)Γ(2− ε)
. (3)

Solution:-

A generic scaleless integral of the form

In ≡ µ−2ε

∫
k

1/kn, (4)

has mass dimension 4 − n. If n ̸= 4 then it has to be proportional to a dimensionful
scale, but there is no dimensionful scale in the integral so it has to be identically 0 by
dimensional analysis. The case n = 4 is special but we can write

I4 = µ−2ε

∫
k

1

k4
= µ−2ε

∫
k

1

k2(k2 −M2)
− µ−2ε

∫
k

M2

k4(k2 −M2)
≡ IUV

4 − I IR4 . (5)

where the first integral is UV divergent but IR convergent and the opposite for the second
one. Using Eq. (3) we obtain

IUV
4 = I1,1 =

i

16π2

(
1

ε̄UV

+ 1 + ln
µ2

M2

)
, (6)

I IR4 =M2I2,1 =
i

16π2

(
1

ε̄IR
+ 1 + ln

µ2

M2

)
. (7)

Technically we have εUV > 0 and εIR < 0 but we can analytically continue one into the
other and have a unique ε. Taking the difference we obtain the requested result.

2



Exercise 1.2. Use the identity

0 =

∫
k

∂

∂kµ
kµ

(k2 −M2)n
, (8)

to prove the following integration by parts identity∫
k

1

(k2 −M2)n+1
=
d− 2n

2n

1

M2

∫
k

1

(k2 −M2)n
, n ≥ 1. (9)

Solution:-

∂

∂kµ
kµ

(k2 −M2)n
=

d

(k2 −M2)n
− 2nk2

(k2 −M2)n+1

=
d

(k2 −M2)n
− 2n(k2 −M2 +M2)

(k2 −M2)n+1

=
d− 2n

(k2 −M2)n
− 2nM2

(k2 −M2)n+1
, (10)

which, upon integration produces Eq. (9).

Exercise 1.3. Consider the following divergent integral

I(p) =

∫ ∞

0

dk
k

k + p
. (11)

Take as many derivatives with respect to p as needed to make the integral finite and
compute it. Write the original integral, by integrating the result with respect to p, as a
non-local function of p plus a polynomial in p (with possibly divergent coefficients).

Solution:-

I(p) is linearly divergent in the UV (k → ∞). Its first integral is logarithmically divergent
and the second one is finite,

I ′(p) = −
∫ ∞

0

dk
k

(k + p)2
, I ′′(p) = 2

∫ ∞

0

dk
k

(k + p)3
=

1

p
. (12)

Integrating twice, with respect to p, we obtain∫ ∫
dpI ′′(p) =

∫
dp [c1 + ln p] = p ln p− p+ c1p+ c2. (13)

where c1 and c2 are integration constants that contain the UV divergences of the original
integral. The important point is that they arise from the integration and therefore are
always propostional to polynomial in momenta, a sign of local operators generating them.
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Exercise 1.4. Use the following topological identities for connected diagrams

L = P − V + 1, 2P + E =
∑
v

nv, (14)

where the sum in the second expression runs over all vertices in the diagram, L stands
for the number of loops, P for the number of internal propagators, V for the number of
vertices, nv is the number of particles on vertex v and E is the number of external particles,
to show that [

(ni − 2)− (nj − 2)Cj
∂

∂Cj

]
C

′ (1)
i,D = −2LC

′ (1)
i,D . (15)

Where C
′ (1)
i,D is a polynomial of WCs arising from diagram D.

Solution:-

C
′ (1)
i is computed as a sum of contributions from Feynman diagrams

C
′ (1)
i =

∑
D

C
′ (1)
i,D , (16)

where D runs over all diagrams that contribute and C,Di
′ (1) is a polynomial in all the

WCs of the model. Using the topological identities we have[
(ni − 2)− (nj − 2)Cj

∂

∂Cj

]
C

′ (1)
i,D =

[
E − 2−

∑
v

(nv − 2)

]
C

′ (1)
i,D

= [E − 2− 2P − E + 2V ]C
′ (1)
i,D = −2LC

′ (1)
i,D . (17)

In the first identity we have used that ni = E and that

Cj
∂

∂Cj
, (18)

acting on C
′ (1)
i,D just runs over all vertices returning C

′ (1)
i,D .
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Exercise 1.5. Consider the following Lagrangian for a real scalar

L = L4 + L6, (19)

L4 = −1

2
ϕ(∂2 +m2)ϕ− λϕ4, (20)

L6 =
α61

Λ2
ϕ6 +

β62
Λ2

ϕ3∂2ϕ. (21)

Perform the field redefinition ϕ→ ϕ+β62ϕ
3/Λ2 and obtain the Lagrangian in terms of the

new interpolating field. Compute now the EoM for ϕ from L4 and introduce the solution
on the second operator of L6. Compare the resulting Lagrangians. Compute now the effect
of the field redefinition up to dimension 8. Compute the EoM for ϕ using the full L and
insert the solution back in the second operator of L6. Compare the resulting Lagrangians.

Solution:-

After the field redefinition the Lagrangian goes to

L →1

2
− 1

2
ϕ(∂2 +m2)ϕ−

(
λ+ β62

m2

Λ2

)
ϕ4

+
1

Λ2

(
α61 − 4λβ62 −

β2
62

2

m2

Λ2

)
ϕ6 +

1

Λ4

[
(6α61β62 − 6λβ2

62)ϕ
8 +

39

10
β2
62ϕ

′ 5∂2ϕ′
]
,

(22)

where we have used integration by parts to prove the following two identities

ϕ4(∂µϕ)(∂
µϕ) = −1

5
ϕ5∂2ϕ, (23)

ϕ3∂2ϕ3 =
9

5
ϕ5∂2ϕ. (24)

The EoM from L are given by

∂2ϕ = −m2ϕ− 4λϕ3 + 6
α61

Λ2
ϕ5 +

β62
Λ2

(3ϕ2∂2ϕ+ ∂2ϕ3). (25)

When inserted in the redundant operator, we obtain

β62
Λ2

ϕ3∂2ϕ→β62
Λ2

ϕ3

[
−m2ϕ− 4λϕ3 + 6

α61

Λ2
ϕ5 +

β62
Λ2

(3ϕ2∂2ϕ+ ∂2ϕ3)

]
=−β62

m2

Λ2
ϕ4 − 4λβ62

1

Λ2
ϕ6 + 6α61β62

1

Λ4
ϕ8 +

24

5
β2
62

1

Λ4
ϕ5∂2ϕ. (26)

Comparing Eq. (26) with Eq (22) we see that the use of EoM correctly recovers the effect
of the field redefinitions at leading order, written in blue in Eq. (26), while the terms
quadratic in β61 come with the incorrect coefficient or are even not present.
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Exercise 1.6. Using partial fractioning, show the following result,

IF = µ2ε

∫
k

1

k2 −M2

1

k2 −m2
=

i

16π2

{
1

ε
+ 1 + ln

µ2

M2
+

m2

M2 −m2
ln
m2

M2

}
. (27)

Solution:-

IF =
µ2ε

M2 −m2

∫
k

(
1

k2 −M2
− 1

k2 −m2

)
=

1

M2 −m2

i

16π2

(
M2

[
1

ε̄
+ 1− ln

M2

µ2

]
−m2

[
1

ε̄
+ 1− ln

m2

µ2

])
=

i

16π2

(
1

ε̄
+ 1 + lnµ2 − M2

M2 −m2
lnM2 +

m2

M2 −m2

[
lnm2 + lnM2 − lnM2

])
=

i

16π2

(
1

ε̄
+ 1 + ln

µ2

M2
+

m2

M2 −m2
ln
m2

M2

)
. (28)

Where we have denoted in blue a term that has been added and subtracted to get the
final result.

Exercise 1.7. Using MatchmakerEFT [1] to compute the beta functions of the WCs of the
following EFT,

LEFT = −1

2
ϕ(∂2+m2

ϕ)ϕ+ψ̄(i/∂−mψ)ψ−ηψ̄ψϕ+
Cs
2
ψ̄ψψ̄ψ+

Cv
2
ψ̄γµψψ̄γµψ+

Ct
2
ψ̄σµνψψ̄σµνψ,

(29)
where we have defined σµν ≡ (i/2)[γµ, γν ].

Solution:-

The result is

16π2βm2
ϕ
= 4η2(m2

ϕ − 6m2
ψ), (30)

16π2βmψ = mψ[3η
2 +m2

ψ(6Cs − 8Cv − 24Ct)], (31)

16π2βη = η[5η2 +m2
ψ(18Cs − 24Cv − 72Ct)], (32)

16π2βCs = 6η2Cs, (33)

16π2βCv = 12η2Ct, (34)

16π2βCt = 2η2(Cv + Ct). (35)
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Exercise 1.8. Match the following two amplitudes,

iMF = ū3u1ū4u2
iλ2

M2

(
1 +

p21 + p23 − 2p1 · p3
M2

)
, (36)

and

iME = iū4u1ū3u2

{
Cψ4 − C

(1)

d2ψ4 [p
2
1 + p22]− (C

(1)

d2ψ4)
∗[p23 + p24]

+ C
(2)

d2ψ4 [p1 · p3 + p2 · p4] + C
(3)

d2ψ4 [p1 · p4 + p2 · p3]
}
, (37)

and show that the system has a unique solution

Cψ4 =
λ2

M2
, C

(1)

d2ψ4 = − λ2

2M4
, C

(2)

d2ψ4 = − λ2

M4
, C

(3)

d2ψ4 = 0. (38)

Solution:-

iME = iū4u1ū3u2

{
Cψ4 − C

(1)

d2ψ4 [p
2
1 + p22]− (C

(1)

d2ψ4)
∗[p23 + p24]

+ C
(2)

d2ψ4 [p1 · p3 + p2 · p4] + C
(3)

d2ψ4 [p1 · p4 + p2 · p3]
}

= ū4u1ū3u2i
{
Cψ4 +

[
C

(3)

d2ψ4 − C
(1)

d2ψ4 −
(
C

(1)

d2ψ4

)∗]
p21 +

[
C

(2)

d2ψ4 − C
(1)

d2ψ4 − (C
(1)

d2ψ4)
∗]p22

− 2
(
C

(1)

d2ψ4

)∗
p23 +

[
C

(2)

d2ψ4 + C
(3)

d2ψ4 − 2
(
C

(1)

d2ψ4

)∗]
p1 · p2

+
[
C

(2)

d2ψ4 − C
(3)

d2ψ4 + 2
(
C

(1)

d2ψ4

)∗]
p1 · p3

+
[
− C

(2)

d2ψ4 + C
(3)

d2ψ4 + 2
(
C

(1)

d2ψ4

)∗]
p2 · p3

}
− (3 ↔ 4), (39)

where in the second equality we have used momentum conservation to eliminate p4 =
p1 + p2 − p3. The term that survives in the limit of vanishing momenta gives

Cψ4 =
λ2

M2
. (40)

Equating the terms proportional to p23 we get

C
(1)

d2ψ2 = − λ2

2M4
. (41)

Equating now the one proportional to p21 we get

C
(3)

d2ψ2 =
λ2

M4
+ C

(1)

d2ψ2 + (C
(1)

d2ψ2)
∗ = 0. (42)

Finally, using the term proportional to p22 we get

C
(2)

d2ψ2 = C
(1)

d2ψ2 + (C
(1)

d2ψ2)
∗ = − λ2

M4
. (43)

It is easy to see that all other terms are correctly reproduced with these values.
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