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Why flavor physics?
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• Generations:
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• Flavour 
Several copies of the same gauge representation. 

• Flavour universal / blind 
Proportional to unit matrix in flavour space.

• Flavour number 
Number of particles of a certain flavour minus the number of anti-particles 
of the same flavour.

• Flavour changing / Flavour violation 
Initial and final flavour number in the process is different. 

• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both.

• Flavour changing charged currents 
Involves both types.

Terminology 

Flavour physics and CP violation

Y. Nir

Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel

Abstract

We explain the reasons for the interest in flavor physics. We describe flavor
physics and the related CP violation within the Standard Model, and explain
how the B-factories proved that the CKM (KM) mechanism dominates the
flavor changing (CP violating) processes that have been observed in meson
decays. We explain the implications of flavor physics for new physics, with
emphasis on the “new physics flavor puzzle”, and present the idea of min-
imal flavor violation as a possible solution. We explain the “standard model
flavor puzzle”, and present the Froggatt-Nielsen mechanism as a possible solu-
tion. We show that measurements of the Higgs boson decays may provide new
opportunities for making progress on the various flavor puzzles. We briefly
discuss two sets of measurements and their possible theoretical implications:
BR(h ! ⌧µ) and R(D(⇤)).

Keywords

Lectures; flavors; CP violation; CKM matrix; flavor changing neutral current;
lepton flavor universality

1 Introduction

1.1 What is flavor?

The term “flavors” is used, in the jargon of particle physics, to describe several copies of the same gauge
representation, namely several fields that are assigned the same quantum charges. Within the Standard
Model, when thinking of its unbroken SU(3)C ⇥ U(1)EM gauge group, there are four different types of
particles, each coming in three flavors:

– Up-type quarks in the (3)+2/3 representation: u, c, t;
– Down-type quarks in the (3)�1/3 representation: d, s, b;
– Charged leptons in the (1)�1 representation: e, µ, ⌧ ;
– Neutrinos in the (1)0 representation: ⌫1, ⌫2, ⌫3.

The term “flavor physics” refers to interactions that distinguish between flavors. By definition,
gauge interactions, namely interactions that are related to unbroken symmetries and mediated therefore
by massless gauge bosons, do not distinguish among the flavors and do not constitute part of flavor
physics. Within the Standard Model, flavor-physics refers to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within the Stan-
dard Model, these are the nine masses of the charged fermions and the four “mixing parameters” (three
angles and one phase) that describe the interactions of the charged weak-force carriers (W±) with quark-
antiquark pairs. If one augments the Standard Model with Majorana mass terms for the neutrinos, one
should add to the list three neutrino masses and six mixing parameters (three angles and three phases)
for the W

± interactions with lepton-antilepton pairs.

© CERN, 2020, CC-BY-4.0 licence, doi:10.23730/CYRSP-2020-005.79, ISSN 0531-4283.

SU(3)QCD × U(1)QED :
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• Flavour 
Several copies of the same gauge representation. 

• Flavour universal / blind 
Proportional to the unit matrix in flavour space.

• Flavour number 
Number of particles of a certain flavour minus the number of anti-particles 
of the same flavour.

• Flavour changing / Flavour violation 
Initial and final flavour number in the process is different. 

• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both.

• Flavour changing charged currents 
Involves both types.

Terminology 

Example: 
The kinetic terms in 
the SM Lagrangian!       f̄iδijiD/ fj
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• Flavour 
Several copies of the same gauge representation. 

• Flavour universal / blind 
Proportional to the unit matrix in flavour space.

• Flavour number 
Number of particles of a certain flavour minus the number of anti-particles 
of the same flavour.

• Flavour changing transitions 
Initial and final flavour number in the process is different. 

• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both.

• Flavour changing charged currents 
Involves both types.

Terminology 

B0 : db̄ B̄0 : d̄bExample: 
 
 Neutral  meson oscillations:  process      B ΔB = 2

*related to U(1)f
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• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both. 
 
 
 

• Flavour changing charged currents 
Involves both types.

Terminology 
The term “flavor universal” refers to interactions with couplings (or to parameters) that are pro-

portional to the unit matrix in flavor space. Thus, the strong and electromagnetic interactions are flavor-
universal.1 An alternative term for “flavor-universal” is “flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that are diago-
nal, but not necessarily universal, in the flavor space. Within the Standard Model, the Yukawa interactions
of the Higgs particle are flavor diagonal in the mass basis.

The term “flavor changing” refers to processes where the initial and final flavor-numbers (that
is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor)
are different. In “flavor changing charged current” (FCCC) processes, both up-type and down-type
flavors, and/or both charged lepton and neutrino flavors are involved. Examples are (i) muon decay via
µ ! e⌫̄e⌫µ, (ii) K� ! µ

�
⌫̄µ (which corresponds, at the quark level, to sū ! µ

�
⌫̄µ), and (iii) B !  K

(b ! cc̄s). Within the Standard Model, these processes are mediated by the W -bosons and occur at tree
level. In “flavor changing neutral current” (FCNC) processes, either up-type or down-type flavors but
not both, and/or either charged lepton or neutrino flavors but not both, are involved. Example are (i)
muon decay via µ ! e�, (ii) KL ! µ

+
µ
� (which corresponds, at the quark level, to sd̄ ! µ

+
µ
�), and

(iii) B ! �K (b ! ss̄s). Within the Standard Model, these processes do not occur at tree level, and are
often highly suppressed.

Another useful term is “flavor violation”. We will explain it later in these lectures.

1.2 Why is flavor physics interesting?

Flavor physics is interesting, on one hand, as a tool for discovery and, on the other hand, because of
intrinsic puzzling features:

– Flavor physics can discover new physics or probe it before it is directly observed in experiments.
Here are some examples from the past:

– The smallness of �(KL!µ
+
µ
�)

�(K+!µ+⌫) led to predicting a fourth (the charm) quark;
– The size of �mK led to a successful prediction of the charm mass;
– The size of �mB led to a successful prediction of the top mass;
– The measurement of "K led to predicting the third generation;
– The measurement of neutrino flavor transitions led to the discovery of neutrino masses.

– CP violation is closely related to flavor physics. Within the Standard Model, there is a single CP
violating parameter, the Kobayashi-Maskawa phase �KM [2]. Baryogenesis tells us, however, that
there must exist new sources of CP violation. Measurements of CP violation in flavor changing
processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that there
exists new physics at, or below, the TeV scale. If such new physics had a generic flavor structure,
it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude above
the observed rates. The question of why this does not happen constitutes the new physics flavor

puzzle.
– Most of the charged fermion flavor parameters are small and hierarchical. The Standard Model

does not provide any explanation of these features. This is the Standard Model flavor puzzle. The
puzzle became even deeper after neutrino masses and mixings were measured because, so far,
neither smallness nor hierarchy in these parameters have been established.

1In the interaction basis, the weak interactions are also flavor-universal, and one can identify the source of all flavor physics
in the Yukawa interactions among the gauge-interaction eigenstates.
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• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both. 
 
 
 

• Flavour changing charged currents 
Involves both types.
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• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both. 
 
 
 

• Flavour changing charged currents 
Involves both types.
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• Flavour violation 
Related to the breaking of flavour symmetries, i.e.  for quarks.U(1)6
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Flavour Physics
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High-energy Frontier
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TeV

UV

High-Intensity Frontier

for flavour-sensitive interactions

+ NA62, Koto, MEG II, Mu3e, …

Opportunities for data-driven progress!
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for flavour-sensitive interactions
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Many many many observables; see PDG!

AG, Smolkovic, Valenti; 2407.02998 (Froggatt-Nielsen ALP)

https://arxiv.org/abs/2407.02998
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Theoretical Flavour Physics
Precision calculations of flavour observables in and beyond the SM 
- to match the (foreseen) experimental precision

Flavour model building  
- to explain the SM and the new physics flavour puzzle, …

Future
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Run 1

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2051...2032 2033 2034 2035 2039

LS1 Run2 LS2 Run3 LS3

2028 2029 2030 2031 2038 2040

CEPC

FCC-ee

Run4 LS4 Run5
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Figure 1: Timelines of the main experiments performing precision measurements on rare b and c processes. The integrated
luminosities already collected and expected are taken from Refs. [50–52]. FCC-ee is placed in the same row of the LHC
timeline since this project can limit the lifetime of the LHC datataking. CEPC collider expected timeline is taken from
Ref. [53]. BESIII experiment timeline and future tau-charm factory timelines relevant for the charm physics program are
taken from Ref. [54] and Ref. [55] respectively.
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Experimental Flavour 
Physics is in a full sprint

+ NA62, MEG II, Mu3e, ... 



16

1. Indirect discovery 
Flavor physics can discover new states before they are directly observed 
in colliders. Historical examples are charm and top quarks.

2. CP violation 
Baryogenesis tells us there must exist new sources of CP violation. 

3. The SM flavour puzzle 
Peculiar structure of observed fermion masses and mixings. BSM 
explanation? 

4. The NP flavour puzzle 
The fine-tuning problem of the Higgs mass imply that there exists new 
physics at, or below, the TeV scale. If such new physics had a generic flavor 
structure, it would contribute to FCNC processes orders of magnitude 
above the observed rates. Why this does not happen?

Why is flavour physics interesting? 

*Also, direct discovery possible, e.g. K → πa

Admir Greljo | Lectures on EFT in flavour
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1. Indirect discovery 
Flavor physics can discover new states before they are directly observed 
in colliders. Historical examples are charm and top quarks.

2. CP violation 
Baryogenesis: New sources of CP violation. 

3. The SM flavour puzzle 
Peculiar structure of observed fermion masses and mixings. BSM 
explanation? 

4. The NP flavour puzzle 
The Higgs hierarchy problem implies TeV-scale NP.   
If such NP had a generic flavor structure, it would contribute to FCNC 
processes orders of magnitude above the observed rates. Why is this not 
the case?

Admir Greljo | Lectures on EFT in flavour

Why is flavour physics interesting? 
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Analogy:   
The periodic table of elements

The flavor puzzle

Quark sector:

yu,d ⇠

� �
VCKM ⇠

� �

Lepton sector:

ye ⇠

� �
VPMNS ⇠

� �Not visible in colliders

Is the structure in the flavor sector

meaningful?

How does potential new physics

couple to flavor?

What is (if any) the flavor symmetry

of the SM?

yt is the leading (only non-perturbative) breaking of GF in the SM:

yu ⇠

� �
: GF ! U(2)q ⇥ U(2)u ⇥ U(3)d ⇥ U(3)` ⇥ U(3)e ⇥ U(1)B

Anders Eller Thomsen (U. Bern) EFT Flavor WG1-GLOB 3
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The NP flavour puzzle

δm2
H ∼

Λ2
UV

16π2

ΛUV ≲ TeV
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H H

Higgs hierarchy problem

No tuned cancelations ⟹
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5.1. INTRODUCTION/THEORY OF FLAVOUR 67
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.

dim[𝒪] = 6
Flavour Anarchy

ΛFlavour ≫ TeV

Flavor & CP violation
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• “Physics is the art of approximation”

• Scale separation is the key 
“We do not need quantum gravity to build a bridge.”

• Example: an apple falling from a tree

CHAPTER

1 Introduction to E↵ective Field Theories

The story so far: In the beginning the Universe
was created. This has made a lot of people very
angry and been widely regarded as a bad move.

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

1.1 Why E↵ective Field Theories?

The Standard Model (SM) of particle physics [1] is a powerful theory, capable of
describing phenomena across a wide range of scales:

This makes it a powerful and versatile tool. But are all of these scales always
important? The answer is clearly no: When we are describing low-energy physics,
like for example the spectrum of hydrogen, we typically ignore e↵ects of particles
of weak-scale masses completely and expand around the limit of the proton being
infinitely heavy. Similarly, when describing processes at very high energy, masses
of light particles can typically be ignored. Of course, these statements depend on
the level of precision with which we want to describe physics. At high precision, we
should include also the small corrections from subleading e↵ects.

The core concept goes beyond just quantum field theories: When asked to com-
pute the velocity of an apple hitting the ground after falling from a tree, we would
simply compute

mgh =
mv2

2
, ) v =

p
2gh , (1.1)

even though we know that the gravitational potential is not linear in h. However,
since the height of the tree is small compared to the scale over which the force of
gravity changes (the radius of the earth R), the above result is accurate. Corrections
to it would arise with a parametrical suppression of the relative order of O(h/R),
which is roughly ⇠ 10�6 for a typical apple tree on earth. The linear gravitational
potential can be thought of an e↵ective theory for the more complete Newtonian

Linear gravitational 
potential

Newtonian gravity
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General relativity

• Effective theory approximates a more complete theory 
in some limit.
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Effective theories: Electrostatics

24

• Scale separation d ≪ R

R

d

V(R) = C1
d
R

+ C2
d2

R2
+ C3

d3

R3
+ . . .

Charge  
distribution

Multipole expansion

• Precision/Distance interplay

Admir Greljo | Lectures on EFT in flavour

[Intensity/Energy frontier]

Large , R σV
Universality

Small , R σV
Reductionism

[Model discrimination] [Model independence]

Few multipolesMore multipoles,
eventually breakdown

Rattazzi’s GGI lectures



Accidental symmetries
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=

V(R) = C1
d
R

+ C2d
⃗d ⃗R

R3
+ . . .

SO(3) ⊃ SO(2) ⊃ …

Admir Greljo | Lectures on EFT in flavour

Emergent (accidental) symmetries 
when truncating the series

+ +



Effective Field Theory



1. Lagrangian

2. Scattering amplitudes

3. Cross sections

4. Events

27

ℒ(x)

dσ ∝ |ℳ |2

dN = L × dσ

ℳ ≡ ⟨p1…pN |k1k2⟩

k1

k2

p1
p2

pN

…

S = ∫ d4x ℒ(x)

Admir Greljo | Lectures on EFT in flavour

QFT crash course



Quantum fields

• The Basic Building Blocks of the Universe

Particles are ripples (excitations) 
of fields tied into little parcels of 
energy due to quantum mechanics.

Quantum + Fields

̂ϕ(x)
Function of spacetime

Operator on the Hilbert 
space of particle states

=

28
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Quantum fields

• Local interactions:

ℒ(x) ⊃ y ϕ(x)ψ̄(x)ψ(x) ϕ
ψ̄

ψ
∝ y

Decay: The ripple of the  field excites  and  fieldsϕ ψ ψ̄
29

@martinmbauer

ϕ

ψ mϕ > 2mψ
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QFT = inevitable low-energy outcome of  
relativity + quantum mechanics + cluster decomposition

30
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Wilsonian approach:  
Succession of effective field theories

Quantum field theory

E ∼ p ∼ λ−1 High Energy = Short distance
Relativity

Quantum Mechanics










































































































Wilsonian QFT theHEPparadigm
UHShort distance

Reductionism

Mph hi's the ultimate scale

E 15
No reason to expect

FEE
t.EE to the breakdown anytime soon

E E The next layer
a
SMEFT Poincare gaugeinvariance

field content

of Lexi infinite polynomial in fields derivatives

X EVV
Irrelevant operators dim 4 suppressed A

WETt.ae
p

IR Long distance 31

(dim 𝒪 − 4)
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GN ∼ (1019 GeV)−2

GF ∼ (102 GeV)−2



EFT cutoff

32

Ultraviolet, 
Short-distance,  
Hard

Infrared,  
Long-distance,  
Soft

10 Chapter 1. Introduction to E↵ective Field Theories

At high energies, this expansion is no longer valid and the e↵ective description breaks
down. This breakdown is particularly obvious when computing matrix elements at
loop-order, where the EFT will produce matrix elements that are more divergent
in the UV than their corresponding counterparts from the UV theory. This can be
seen at the example in eq. (1.6). In the e↵ective theory, this graph becomes:

'' =
� C6
⇤2

Z
ddl

(2⇡)d

✓
1

l2 �m2

◆2

=
i� C6

16⇡2⇤2

⇢
1

✏
+ log

µ2

m2

�
, (1.18)

where we worked in dimensional regularization with d = 4 � 2✏. The quantity C6
is the Wilson coe�cient of the e↵ective �6 interaction. The ultraviolet divergence
present in this graph was absent in eq. (1.6). It originates from regions in the
integration over l where the virtual modes becomes hard enough to probe the non-
locality in the e↵ective vertex. In this region, the EFT breaks down and produces
UV divergences. We can actually make use of that fact later to solve the problems
of the aforementioned large logarithms.

We have yet to determine the Wilson coe�cients of the EFT. To this end, let us
return to the statement from which we started and focus on the part of it we have
not discussed: The UV theory and the EFT must agree in the IR.

At the cuto↵ scale ⇤ at which we integrated out the hard modes, LUV and Le↵ must
produce consistent matrix elements. Given that the full theory LUV is known, this
fixed the couplings of Le↵ order by order in power-counting and in perturbation
theory. This producedure is called matching and the cuto↵ scale, ⇤ is often also
called matching scale.

Matching can be done through several methods. By far the most common one is
diagrammatic. One computes matrix elements in both the e↵ective and UV theories
and equates them to detmermine the coupling constants of the e↵ective Lagrangian.
Note that this does not only apply to the Wilson coe�cients of the “new” e↵ective
operators but also to the coupling constants of operators that both Le↵ and LUV

share. For example, the coupling � in our Lagrangian (1.4) will not be the same as
the � in the UV Lagrangian (1.2). Instead, it will receive corrections from virtual
hard modes.

Another way of performing the matching is the background field method. In
this method, fields are separated into the classical fields and quantum fluctuations.
One can then integrate out the hard modes by solving the path integral for them
explicitely. See section 1.6 for an introduction.

1.4.1 Matching at tree-level: Muon decay

A classic example of an e↵ective theory is the Fermi theory of muon decay. The
decay of the muon µ ! e⌫̄e⌫µ proceeds through a virtual W boson in the SM.
The momentum transfer is however much lower than the mass of the W boson,

cutoff

E

Admir Greljo | Lectures on EFT in flavour

[Λ] = 1
spurion of dilatations



• Degrees of freedom 
Drop heavy fields and keep only the light ones. 
Heavy and light are defined by the cutoff.

• Symmetries 
Space-time, gauge symmetries. They shape the 
infinite series of local operators of the EFT.

• Power-counting 
The expansion parameter gives meaning to the 
EFT series.

33

EFT pillars
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infinite seriesℒ =
Theory construction: 
1. Space-time & gauge invariance + field content 
2. Local Lagrangian = infinite series

ℒ(x) =
∞

∑
𝒪

C𝒪 𝒪(x)

Local operator 
- a monomial in fields and derivatives

Theory 
parameter 
(WC)

∼ ( E
Λ𝒪 )

[𝒪]−4

Physical effects

• IR relevance: dim[𝒪] ≤ 4
• Irrelevant couplings suppressed by Λ4−dim 𝒪

𝒪

C𝒪 = c𝒪 Λ4−[𝒪]
𝒪

Dimensionless  
parameter

Cutoff scale

Expansion parameter = 
E

Λ𝒪



Symmetries
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Spurion: a parameter can always be 
assigned a symmetry representation

Observable’s dependence on such 
params dictated by symmetry covariance

• Exact or approximate symmetries  Selection rules⟹

• Global symmetries play a crucial role to learn about the UV

Accidental =   
(quantum gravity breaks  
global symmetries)

As a result of truncating the series at low energies

• Spacetime and gauge symmetries are due to redundancies  
(physics is independent of parameterizations)



Dimensional analysis
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• Dilatation symmetry  Dimensional analysis⟹

Natural units:

Spurion

Mass dimension:   

In general, 

[m] = 1

𝒪 → λ[𝒪]𝒪



37

Dimensions

S =
∫

d4x L(x) [L ] = E 4

LKG = ∂µφ†∂µφ−m2 φ†φ [φ ] = [V µ ] = [Aµ ] = E

LDirac = ψ̄ (iγµ∂µ −m)ψ [ψ ] = E 3/2

[σ ] = E−2 , [ Γ ] = E

EFT A. Pich – 2020 3

(Action) (Lagrangian)

(scalar) (vector)

(fermion)

(cross section) (decay rate)
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Dimensional analysis



Classification of operators
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ℒ(x) ⊃ ∑ Ci𝒪i
[𝒪i] = di

[Ci] = 4 − di
δ ∼ Ci Edi−4

• Relevant

di < 4

dimensionless contribution

• Marginal • Irrelevant

Low-energy (IR) behavior

di = 4 di > 4

Renormalisable Non-Renormalisable
IR relevance is why the 
SM is renormalizable! *Loops bring in 

anomalous dimensions
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Example 1

ℒ ⊃ μϕ3

σ2→2 ∼
μ4

s3
Scalar Field Theory

• LI = −
λ

3!
φ3 [λ ] = E

σ(1 + 2 → 3 + 4) ∼
λ4

s3

{

1 +O
(

λ2

s

)

+ · · ·
}

(s ≫ m2)

• LI = −
λ

4!
φ4 [λ ] = E 0

σ(1 + 2 → 3 + 4) ∼
λ2

s

{

1 +O (λ) + · · ·
}

(s ≫ m2)

EFT A. Pich – 2020 4

ℒ ⊃ λϕ4

σ2→2 ∼
λ2

s

Scalar Field Theory

• LI = −
λ

3!
φ3 [λ ] = E

σ(1 + 2 → 3 + 4) ∼
λ4

s3

{

1 +O
(

λ2

s

)

+ · · ·
}

(s ≫ m2)

• LI = −
λ

4!
φ4 [λ ] = E 0

σ(1 + 2 → 3 + 4) ∼
λ2

s

{

1 +O (λ) + · · ·
}

(s ≫ m2)

EFT A. Pich – 2020 4

ℒ ⊃ G (ψ̄ψ)2

σ2→2 ∼ G2s

Example 2 Example 3
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Relevant | Marginal | Irrelevant

s = (p1 + p2)2 = E2

[μ] = 1 [λ] = 0 [G] = − 2



EFT scales
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UV
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IR

ℒEFT = (∂ϕ)2 − m2ϕ2 − λϕ4 + c6ϕ6 + …

Λ

m  dominatesm2

 dominatec6 + …

 dominates, 
Nearly scale-
invariant

λ

New description: NR EFT

New description: UV theory

δ ∼
m2

E2
+ λ + c6E2 + …



ℒUV ⊃ ψ̄ (iD − m) ψ
+∂μΦ ∂μΦ − M2Φ†Φ
−y ψ̄ψ Φ

EFT matching
Toy example

41

Degrees of freedom (in/out states): only ψ

Admir Greljo | Lectures on EFT in flavour

Consider  where  is the collider’s energyM ≫ E ≳ m E



Consider  where  is the collider’s energyM ≫ E ≳ m E

Toy example

Degrees of freedom (in/out states): only ψ

42

Φψ

ψ̄

ψ

ψ̄y y

4 Chapter 1. Introduction to E↵ective Field Theories

theory of gravity (which in turn, can be thought of as an e↵ective theory for General
Relativity).

E↵ective Field Theories (EFTs) are quantum field theories (QFTs) that are less
general by construction. They focus on an isolated region compared to a more
complete QFT (for example the SM), for which they are designed and treat e↵ects
from other regions as perturbations in a well-defined and systematic way. As an
example, consider a theory of two real scalars, � and ' with the Lagrangian:

L =
1

2
(@µ�)(@

µ�)� 1

2
M2�2 +

1

2
(@µ')(@

µ')� 1

2
m2'2 +

�

4!
'4 +

g

3!
'3� . (1.2)

Let � be much heavier than ', meaning M � m and let us consider a process
at very low energy E ⌧ M . Processes with intermediate � particles will then be
suppressed by the propagator

h0|T{�(0)�(x)}|0i =
Z

d4k

(2⇡)4
e�ikx

i

k2 �M2
, (1.3)

where k2 ⇠ O(E2) ⌧ M2. We can see immediately, that neglecting k2 makes
the expressions we are dealing with structurally simpler while still being a good
approximation up to corrections of order O(k2/M2).

The next important point is that at low energies the heavy scalar � cannot be
produced as a real particle. We should therefore be able to describe physics with a
Lagrangian that contains only ':

Le↵ =
1

2
(@µ')(@

µ')� 1

2
m2'2 +

�

4!
'4 +�L . (1.4)

Here �L is a new ingredient with interactions of ' that were previously not part of
the Lagrangian (1.2). While in the full theory we had processes of the form '3 ! '3

through virtual � particles, the interaction terms generating these amplitudes are
missing from the e↵ective Lagrangian since it does not contain �. Therefore, we
must include an interaction of the form

�L � C6
M2

'6 , (1.5)

to describe this process. Note how this operator needs to have a prefactor with two
inverse powers of mass. We have chosen the heavy mass as a prefactor 1/M2 with
no further explanation other than the propagator of � being of this form in the
low-energy limit, but we will justify this later on in more detail.

You might now ask, why we need an e↵ective Lagrangian when we can simply
compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
we are computing radiative corrections. As an example, take the Lagrangian (1.2)
again. At one loop, the interactions in this theory generate a contribution to the

ℒUV ⊃ ψ̄ (iD − m) ψ
+∂μΦ ∂μΦ − M2Φ†Φ
−y ψ̄ψ Φ
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EFT matching



Toy example

Degrees of freedom (in/out states): only ψ
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EFT

ℒeft ⊃ ψ̄ (iD − m) ψ
−C ψ̄ ψ ψ̄ ψ + …

Φψ

ψ̄

ψ

ψ̄y y
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theory of gravity (which in turn, can be thought of as an e↵ective theory for General
Relativity).

E↵ective Field Theories (EFTs) are quantum field theories (QFTs) that are less
general by construction. They focus on an isolated region compared to a more
complete QFT (for example the SM), for which they are designed and treat e↵ects
from other regions as perturbations in a well-defined and systematic way. As an
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Let � be much heavier than ', meaning M � m and let us consider a process
at very low energy E ⌧ M . Processes with intermediate � particles will then be
suppressed by the propagator

h0|T{�(0)�(x)}|0i =
Z

d4k

(2⇡)4
e�ikx

i

k2 �M2
, (1.3)

where k2 ⇠ O(E2) ⌧ M2. We can see immediately, that neglecting k2 makes
the expressions we are dealing with structurally simpler while still being a good
approximation up to corrections of order O(k2/M2).

The next important point is that at low energies the heavy scalar � cannot be
produced as a real particle. We should therefore be able to describe physics with a
Lagrangian that contains only ':

Le↵ =
1
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2
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Here �L is a new ingredient with interactions of ' that were previously not part of
the Lagrangian (1.2). While in the full theory we had processes of the form '3 ! '3

through virtual � particles, the interaction terms generating these amplitudes are
missing from the e↵ective Lagrangian since it does not contain �. Therefore, we
must include an interaction of the form

�L � C6
M2

'6 , (1.5)

to describe this process. Note how this operator needs to have a prefactor with two
inverse powers of mass. We have chosen the heavy mass as a prefactor 1/M2 with
no further explanation other than the propagator of � being of this form in the
low-energy limit, but we will justify this later on in more detail.

You might now ask, why we need an e↵ective Lagrangian when we can simply
compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
we are computing radiative corrections. As an example, take the Lagrangian (1.2)
again. At one loop, the interactions in this theory generate a contribution to the

−
i

M2
δ(4)(x) + …

ψ

ψ̄

ψ

ψ̄
+…
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theory of gravity (which in turn, can be thought of as an e↵ective theory for General
Relativity).

E↵ective Field Theories (EFTs) are quantum field theories (QFTs) that are less
general by construction. They focus on an isolated region compared to a more
complete QFT (for example the SM), for which they are designed and treat e↵ects
from other regions as perturbations in a well-defined and systematic way. As an
example, consider a theory of two real scalars, � and ' with the Lagrangian:
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Let � be much heavier than ', meaning M � m and let us consider a process
at very low energy E ⌧ M . Processes with intermediate � particles will then be
suppressed by the propagator

h0|T{�(0)�(x)}|0i =
Z

d4k

(2⇡)4
e�ikx

i

k2 �M2
, (1.3)

where k2 ⇠ O(E2) ⌧ M2. We can see immediately, that neglecting k2 makes
the expressions we are dealing with structurally simpler while still being a good
approximation up to corrections of order O(k2/M2).

The next important point is that at low energies the heavy scalar � cannot be
produced as a real particle. We should therefore be able to describe physics with a
Lagrangian that contains only ':
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µ')� 1
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m2'2 +

�

4!
'4 +�L . (1.4)

Here �L is a new ingredient with interactions of ' that were previously not part of
the Lagrangian (1.2). While in the full theory we had processes of the form '3 ! '3

through virtual � particles, the interaction terms generating these amplitudes are
missing from the e↵ective Lagrangian since it does not contain �. Therefore, we
must include an interaction of the form

�L � C6
M2

'6 , (1.5)

to describe this process. Note how this operator needs to have a prefactor with two
inverse powers of mass. We have chosen the heavy mass as a prefactor 1/M2 with
no further explanation other than the propagator of � being of this form in the
low-energy limit, but we will justify this later on in more detail.

You might now ask, why we need an e↵ective Lagrangian when we can simply
compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
we are computing radiative corrections. As an example, take the Lagrangian (1.2)
again. At one loop, the interactions in this theory generate a contribution to the

Local interaction: 
The Compton wavelength  is very small.M−1

ℒUV ⊃ ψ̄ (iD − m) ψ
+∂μΦ ∂μΦ − M2Φ†Φ
−y ψ̄ψ Φ
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EFT matching

 needed to probe the inner structure.E ∼ M

Consider  where  is the collider’s energyM ≫ E ≳ m E



EFT: Loops 
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Schwartz, QFT book… 

… 

• Truncation of the series always ensures finite numbers of counterterms. 

• At : 𝒪(G2
F)
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Schwartz, QFT book… 

… 

• Truncation of the series always ensures finite numbers of counterterms. 

• At : 𝒪(G2
F)



EFT: Loops 
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Schwartz, QFT book… 

… 

• Truncation of the series always ensures finite numbers of counterterms. 

• At : 𝒪(G2
F)

• After renormalization:

… 

• Loops add log dependence to the 
discussed dimensional analysis



EFT: Running 
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• Large logarithms: The breakdown of the perturbative calculation.

• Renormalisation group equation is the way out of this disaster.

1308.2627, 
1310.4838, 
1312.2014, 
1709.04486, 
1711.05270, 
1711.10391, 
1710.06445, 
1804.05033, 
1908.05295, 
2010.16341,
2012.08506, 
2012.07851, 
…

EFT-workflow

E

Matching

Matching

NP

SMEFT

LEFT

R
G

R
G

R
G

Jenkins, Manohar, Trott [1308.2627]

Jenkins, Manohar, Trott [1310.4838]

Alonso et al. [1312.2014]

Jenkins, Manohar, Sto↵er [1709.04486]

Dekens, Sto↵er [1908.05295]

Jenkins, Manohar, Sto↵er [1711.05270]

Obs
erva

bles

New
mode

l

Anders Eller Thomsen (U. Bern) Functional Matching HEFT 2022 2

WET

Anomalous dimension 
matrix

• Operator mixing important in flavor physics
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Spurion: a parameter can always be 
assigned a symmetry representation Symmetry covariance
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Spurion: a parameter can always be 
assigned a symmetry representation Symmetry covariance

• Example: QED with two lepton flavors and a real scalar

−ℒ ⊃ meēLeR + mττ̄LτR + (yLēLτR + yRēRτL) ϕ

Spurion charges

U(1)eL

U(1)eR

U(1)τL

U(1)τR

me mτ yL yR

−
0
0

+

−

0
0
+

+
0
0
−

0

0

+
−



Spurions & Naturalness
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Spurion: a parameter can always be 
assigned a symmetry representation Symmetry covariance

• Example: QED with two lepton flavors and a real scalar

−ℒ ⊃ meēLeR + mττ̄LτR + (yLēLτR + yRēRτL) ϕ

Spurion charges

U(1)eL

U(1)eR

U(1)τL

U(1)τR

me mτ yL yR

−
0
0

+

−

0
0
+

+
0
0
−

0

0

+
−

• Symmetry covariance (chiral symmetry + dilatations)  
 

• Sending  does not increase the symmetry. No ’t Hooft 
naturalness here; be careful with chiral symmetry!

[me] = [m*τ yLy*R ]
me → 0

me ≳
mτyLyR

16π2
eL τR τL eR

ϕ
Naturalness criteria



Fermi theory
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q2 ≪ m2
W
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Fermi theory
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4-fermion 
scattering at 
energy E

ℳ ∼ GF E2   ⟹ MW ≲ 1 TeV
u

d

e

ν

•Violation of perturbative unitary 

•Important lesson!

GF ∼ (100 GeV)−2
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Theory of weak decays

⟨ℋeff⟩ ∝ ⟨Q(μ)⟩ C(μ)

Effective Field Theory 
Factorisation

Hadronic matrix elements Wilson coefficients

53

short-distance contributions E > μlong-distance contributions E < μ

Lattice QCD,  
Heavy quark effective theory,  
Heavy quark expansion, 
QCD factorisation,  
SCET, 
ChPT,  
QCD sum rules, 
Light-cone sum rules, 
…

1308.2627, 
1310.4838, 
1312.2014, 
1709.04486, 
1711.05270, 
1711.10391, 
1710.06445, 
1804.05033, 
1908.05295, 
2010.16341,
2012.08506, 
2012.07851, 
…

http://flag.unibe.ch/2021/2205.15373, 
2205.13952, 
2204.09091, 
2108.05589, 
1904.08731, 
1902.09553, 
1908.09398, 
1912.09335, 
1908.07011, 
2002.00020, 
2006.07287, 
2101.12028, 
2105.09330, 
2106.12168, 
2112.07685, 
2206.11281, 

…

EFT-workflow

E

Matching

Matching

NP

SMEFT

LEFT

R
G

R
G

R
G

Jenkins, Manohar, Trott [1308.2627]

Jenkins, Manohar, Trott [1310.4838]

Alonso et al. [1312.2014]

Jenkins, Manohar, Sto↵er [1709.04486]

Dekens, Sto↵er [1908.05295]

Jenkins, Manohar, Sto↵er [1711.05270]

Obs
erva

bles

New
mode

l

Anders Eller Thomsen (U. Bern) Functional Matching HEFT 2022 2

WET
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See Buras’s book



SMEFT
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• SM fields & symmetries
• Scale separation 
• Higher-dimensional operators encode short-distance physics:

ΛQ ≫ vEW

ℒ = ℒSM +
∞

∑
𝒪>4

c𝒪

Λ[𝒪]−4
𝒪

𝒪
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SMEFT: Systematic BSM

New Physics
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EFT-workflow

E

Matching

Matching

NP

SMEFT

LEFT

R
G

R
G

R
G

Jenkins, Manohar, Trott [1308.2627]

Jenkins, Manohar, Trott [1310.4838]

Alonso et al. [1312.2014]

Jenkins, Manohar, Sto↵er [1709.04486]

Dekens, Sto↵er [1908.05295]

Jenkins, Manohar, Sto↵er [1711.05270]

Obs
erva

bles

New
mode

l

Anders Eller Thomsen (U. Bern) Functional Matching HEFT 2022 2

WET

• Strongly coupled
Yet, SMEFT works provided the mass gap

• Perturbative

1. Tree-level
Finite number of topologies, classified at dim-6. 

2. Loop-level

To get a large effect in 
weak decays:

• a large coupling • a small mass
Perturbativity Direct searches

Infinite but countable.
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The Standard Model



Basic notions: 
 
1. “A” quantum field theory 
 
2. Symmetries

The Standard Model

58

     +ϕ qi, ℓi, ui, di, ei

Poincaré + SU(3)C × SU(2)L × U(1)Y

3. Field Content

Flavour i = 1,2,3 Complexity!
4. Renormalisability

*The IR relevant terms in an EFT expansiondim 𝒪 ≤ 4

Gauge

Spacetime
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2 The Standard Model

A model of elementary particles and their interactions is defined by the following ingredients: (i) The
symmetries of the Lagrangian and the pattern of spontaneous symmetry breaking (SSB); (ii) The repre-
sentations of fermions and scalars. The Standard Model (SM) is defined as follows:

– The symmetry is a local

GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y . (1)

– It is spontaneously broken by the VEV of a single Higgs scalar,

�(1, 2)+1/2, (h�0i = v/

p
2) , (2)

GSM ! SU(3)C ⇥ U(1)EM (QEM = T3 + Y ) . (3)

– There are three fermion generations, each consisting of five representations of GSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)�1/3, LLi(1, 2)�1/2, ERi(1, 1)�1 . (4)

2.1 The Lagrangian

The most general renormalizable Lagrangian with scalar and fermion fields can be decomposed into

L = Lkin + L + LYuk + L� . (5)

Here Lkin describes free propagation in spacetime, as well as gauge interactions, L gives fermion mass
terms, LYuk describes the Yukawa interactions, and L� gives the scalar potential. We now find the
specific form of the Lagrangian made of the fermion fields QLi, URi, DRi, LLi and ERi (4), and the
scalar field (2), subject to the gauge symmetry (1) and leading to the SSB of Eq. (3).

2.1.1 Lkin

The local symmetry requires the following gauge boson degrees of freedom:

G
µ

a(8, 1)0, W
µ

a (1, 3)0, B
µ(1, 1)0 . (6)

The corresponding field strengths are given by

G
µ⌫

a = @
µ
G
⌫

a � @
⌫
G

µ

a � gsfabcG
µ

b
G
⌫

c ,

W
µ⌫

a = @
µ
W

⌫

a � @
⌫
W

µ

a � g✏abcW
µ

b
W

⌫

c ,

B
µ⌫ = @

µ
B
⌫ � @

⌫
B

µ
. (7)

The covariant derivative is

D
µ = @

µ + igsG
µ

aLa + igW
µ

b
Tb + ig

0
B

µ
Y , (8)

where the La’s are SU(3)C generators (the 3 ⇥ 3 Gell-Mann matrices 1
2�a for triplets, 0 for singlets),

the Tb’s are SU(2)L generators (the 2⇥2 Pauli matrices 1
2⌧b for doublets, 0 for singlets), and the Y ’s are

the U(1)Y charges. Explicitly, the covariant derivatives acting on the various scalar and fermion fields
are given by

D
µ
� =

✓
@
µ +

i

2
gW

µ

b
⌧b +

i

2
g
0
B

µ

◆
� ,
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D
µ
QLi =

✓
@
µ +

i

2
gsG

µ

a�a +
i

2
gW

µ

b
⌧b +

i

6
g
0
B

µ

◆
QLi ,

D
µ
URi =

✓
@
µ +

i

2
gsG

µ

a�a +
2i

3
g
0
B

µ

◆
URi ,

D
µ
DRi =

✓
@
µ +

i

2
gsG

µ

a�a �
i

3
g
0
B

µ

◆
DRi ,

D
µ
LLi =

✓
@
µ +

i

2
gW

µ

b
⌧b �

i

2
g
0
B

µ

◆
LLi ,

D
µ
ERi =

�
@
µ � ig

0
B

µ
�
ERi . (9)

Lkin is given by

LSM
kin = �1

4
G

µ⌫

a Gaµ⌫ �
1

4
W

µ⌫

b
Wbµ⌫ �

1

4
B

µ⌫
Bµ⌫

�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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Covariant derivative example:

The Standard Model
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i = 1,2,3

SU(3) SU(2) U(1)
qLi

lLi

3 2

GA
μ Wa

μ Bμ

uRi

dRi

eRi

1 2
3 1

3 1
1 1 −1

−1/3

+2/3
−1/2

+1/6

The Standard Model
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The Standard Model

Yukawa sector

Gauge sector

Higgs sector
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The Standard Model

# parameters:

- Gauge and Higgs sector: 5
- Yukawa sector: 13*Would be 3 for a 

single generation

i, j = 1,2,3
All parameters free

ϕ

fi

fj

∝ Yij
f

Single free parameter

qα,i

qβ, j

GA ∝ gsTA
αβδij

Yukawa sector

Gauge sector

Higgs sector
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The Higgs field

The Higgs 
mechanism

63

• How do elementary particles get mass?

SU(3) × SU(2) × U(1)

SU(3) × U(1)EM

ϕ 1 2 +1/2 𝒱 = − μ2ϕ†ϕ + λ(ϕ†ϕ)2

SSB: ⟨ϕ⟩ ≠ 0
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 The EW hierarchy puzzleℒ2 :

μ2 ≪ M2
P

•  sets the EW scale.ℒ2 = μ2H†H

?
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•  sets the EW scale.ℒ2 = μ2H†H

 The EW hierarchy puzzleℒ2 :

μ2 ≪ M2
P ?








































































































Wilsonian QFT theHEPparadigm
UHShort distance

Reductionism

Mph hi's the ultimate scale
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No reason to expect
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t.EE to the breakdown anytime soon

E E The next layer
a
SMEFT Poincare gaugeinvariance

field content

of Lexi infinite polynomial in fields derivatives

X EVV
Irrelevant operators dim 4 suppressed A

WETt.ae
p

IR Long distance

• Pion mass splitting:

m2
π+

− m2
π0

= 𝒪(1) ×
e2

16π2
m2

ρ

= + +

Figure 1: The one loop corrections to the Higgs mass parameter in the SM. All three diagrams
are quadratically divergent, leading to the hierarchy problem.

• In the above discussion we have been somewhat cavalier with the cut-off scale ⇤2. One
might worry (and indeed many people do!) that the hierarchy problem is merely an ar-
tifact of using a crude cut-off regulator. However, those understanding effective theories
well realize quickly that the hierarchy problem is not at all about various regularization
schemes. As in any good effective theory, ⇤ in our calculations is merely standing in
for the physical mass threshold at which new heavy particles appear. You can think
of ⇤ as literally the mass of a new heavy particle (mNP ), and the “quadratically di-
vergent" contributions to the Higgs mass parameter simply as log-divergent or finite
contribution from the heavy particle which are proportional to m2

NP
. Moreover, these

contributions contain an imaginary part from the new particle going on-shell, which is
physical and cannot be removed by regulation scheme. Thus using dimensional regular-
ization (a scheme where power law divergences are simply regulated to zero) is really
not a solution of the hierarchy problem.

• The hierarchy problem is really the sensitivity to new scales. If there is no new scale
there really is no hierarchy problem. However most physicists believe that there are at
least two issues that will force us to extend the SM: the appearance of quantum gravity
around the Planck scale and the appearance of a Landau pole in the hypercharge gauge
coupling at exponentially large scales.

• For a while it was popular to play with the idea that the terms in Eq. (1.2) actually
cancel each other. This used to be known as the “Veltman condition", which would have
singled out a very particular value for the Higgs mass. However we can easily see that
even if the mass had turned out to be the magical value (which it did not) this would not
have solved the hierarchy problem. As we discussed in Eq. (1.2) ⇤ is merely a stand-in
for the mass of a heavy particle that will ultimately regulate these loops. However this
can numerically be different for the three diagrams, thus one should really be talking
about the gauge cut-off scale ⇤g, the fermion cut-off scale ⇤f and the Higgs cut-off scale
⇤H , which could all be different by O(1) factors or even more. Thus it is not really
meaningful to talk about a Veltman-like condition, unless some symmetry ensures that
all these cut-off scales are equal.

• A simple way to phrase the hierarchy problem is the fact that the Higgs mass term
µ2

|H|
2 is a relevant operator, which grows towards the IR. The Wilsonian formulation

of the hierarchy problem then is that it is difficult to choose a RG trajectory which in

– 3 –

π+ π−

γ
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•  sets the EW scale.ℒ2 = μ2H†H

• Naturalness: New mass threshold not 
far above the EW scale

• Supersymmetry?
• Composite Higgs / Extra Dimensions?

 The EW hierarchy puzzleℒ2 :

μ2 ≪ M2
P ?
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Figure 1: The one loop corrections to the Higgs mass parameter in the SM. All three diagrams
are quadratically divergent, leading to the hierarchy problem.

• In the above discussion we have been somewhat cavalier with the cut-off scale ⇤2. One
might worry (and indeed many people do!) that the hierarchy problem is merely an ar-
tifact of using a crude cut-off regulator. However, those understanding effective theories
well realize quickly that the hierarchy problem is not at all about various regularization
schemes. As in any good effective theory, ⇤ in our calculations is merely standing in
for the physical mass threshold at which new heavy particles appear. You can think
of ⇤ as literally the mass of a new heavy particle (mNP ), and the “quadratically di-
vergent" contributions to the Higgs mass parameter simply as log-divergent or finite
contribution from the heavy particle which are proportional to m2

NP
. Moreover, these

contributions contain an imaginary part from the new particle going on-shell, which is
physical and cannot be removed by regulation scheme. Thus using dimensional regular-
ization (a scheme where power law divergences are simply regulated to zero) is really
not a solution of the hierarchy problem.

• The hierarchy problem is really the sensitivity to new scales. If there is no new scale
there really is no hierarchy problem. However most physicists believe that there are at
least two issues that will force us to extend the SM: the appearance of quantum gravity
around the Planck scale and the appearance of a Landau pole in the hypercharge gauge
coupling at exponentially large scales.

• For a while it was popular to play with the idea that the terms in Eq. (1.2) actually
cancel each other. This used to be known as the “Veltman condition", which would have
singled out a very particular value for the Higgs mass. However we can easily see that
even if the mass had turned out to be the magical value (which it did not) this would not
have solved the hierarchy problem. As we discussed in Eq. (1.2) ⇤ is merely a stand-in
for the mass of a heavy particle that will ultimately regulate these loops. However this
can numerically be different for the three diagrams, thus one should really be talking
about the gauge cut-off scale ⇤g, the fermion cut-off scale ⇤f and the Higgs cut-off scale
⇤H , which could all be different by O(1) factors or even more. Thus it is not really
meaningful to talk about a Veltman-like condition, unless some symmetry ensures that
all these cut-off scales are equal.

• A simple way to phrase the hierarchy problem is the fact that the Higgs mass term
µ2

|H|
2 is a relevant operator, which grows towards the IR. The Wilsonian formulation

of the hierarchy problem then is that it is difficult to choose a RG trajectory which in
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Figure 1: The one loop corrections to the Higgs mass parameter in the SM. All three diagrams
are quadratically divergent, leading to the hierarchy problem.

• In the above discussion we have been somewhat cavalier with the cut-off scale ⇤2. One
might worry (and indeed many people do!) that the hierarchy problem is merely an ar-
tifact of using a crude cut-off regulator. However, those understanding effective theories
well realize quickly that the hierarchy problem is not at all about various regularization
schemes. As in any good effective theory, ⇤ in our calculations is merely standing in
for the physical mass threshold at which new heavy particles appear. You can think
of ⇤ as literally the mass of a new heavy particle (mNP ), and the “quadratically di-
vergent" contributions to the Higgs mass parameter simply as log-divergent or finite
contribution from the heavy particle which are proportional to m2

NP
. Moreover, these

contributions contain an imaginary part from the new particle going on-shell, which is
physical and cannot be removed by regulation scheme. Thus using dimensional regular-
ization (a scheme where power law divergences are simply regulated to zero) is really
not a solution of the hierarchy problem.

• The hierarchy problem is really the sensitivity to new scales. If there is no new scale
there really is no hierarchy problem. However most physicists believe that there are at
least two issues that will force us to extend the SM: the appearance of quantum gravity
around the Planck scale and the appearance of a Landau pole in the hypercharge gauge
coupling at exponentially large scales.

• For a while it was popular to play with the idea that the terms in Eq. (1.2) actually
cancel each other. This used to be known as the “Veltman condition", which would have
singled out a very particular value for the Higgs mass. However we can easily see that
even if the mass had turned out to be the magical value (which it did not) this would not
have solved the hierarchy problem. As we discussed in Eq. (1.2) ⇤ is merely a stand-in
for the mass of a heavy particle that will ultimately regulate these loops. However this
can numerically be different for the three diagrams, thus one should really be talking
about the gauge cut-off scale ⇤g, the fermion cut-off scale ⇤f and the Higgs cut-off scale
⇤H , which could all be different by O(1) factors or even more. Thus it is not really
meaningful to talk about a Veltman-like condition, unless some symmetry ensures that
all these cut-off scales are equal.

• A simple way to phrase the hierarchy problem is the fact that the Higgs mass term
µ2

|H|
2 is a relevant operator, which grows towards the IR. The Wilsonian formulation

of the hierarchy problem then is that it is difficult to choose a RG trajectory which in
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π+ π−
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• Matter : Quarks and Leptons

θfL ≠ θfR ⟹
• The left-handed and the right-handed fields have different  phases:U(1)Y

The mass  is forbidden!mf f̄L fR

67

• The Higgs field saves the day, θH + θfR = θfL

ℒ ⊃ − yf f̄L fR ϕ ⟹ mf = yf ⟨ϕ⟩

The Higgs mechanism

• The mass  the strength of the interaction with the Higgs field∝

SSB

⃗p
⃗S

⃗p
⃗S

Admir Greljo | Lectures on EFT in flavour



Table 1: The SM particles

particle spin color QEM mass [v]

W
± 1 (1) ±1 1

2g

Z
0 1 (1) 0 1

2

p
g2 + g02

A
0 1 (1) 0 0
g 1 (8) 0 0

h 0 (1) 0
p
2�

e, µ, ⌧ 1/2 (1) �1 ye,µ,⌧/
p
2

⌫e, ⌫µ, ⌫⌧ 1/2 (1) 0 0
u, c, t 1/2 (3) +2/3 yu,c,t/

p
2

d, s, b 1/2 (3) �1/3 yd,s,b/
p
2

2.2 The spectrum

The spectrum of the standard model is presented in Table 1.
All masses are proportional to the VEV of the scalar field, v. For the three massive gauge bosons,

and for the fermions, this is expected: In the absence of spontaneous symmetry breaking, the former
would be protected by the gauge symmetry and the latter by their chiral nature. For the Higgs boson, the
situation is different, as a mass-squared term does not violate any symmetry.

For the charged fermions, the spontaneous symmetry breaking allows their masses because they
are in vector-like representations of the SU(3)C ⇥ U(1)EM group: The LH and RH charged lepton
fields, e, µ and ⌧ , are in the (1)�1 representation; The LH and RH up-type quark fields, u, c and t, are
in the (3)+2/3 representation; The LH and RH down-type quark fields, d, s and b, are in the (3)�1/3

representation. On the other hand, the neutrinos remain massless in spite of the fact that they are in the
(1)0 representation of SU(3)C ⇥ U(1)EM, which allows for Majorana masses. Such masses require a
VEV carried by a scalar field in the (1, 3)+1 representation of the SU(3)C⇥SU(2)L⇥U(1)Y symmetry,
but there is no such field in the SM.

The experimental values of the charged fermion masses are [1] 2

me = 0.510998946(3) MeV , mµ = 105.6583745(24) MeV , m⌧ = 1776.86(12) MeV ,

mu = 2.2+0.5
�0.4 MeV , mc = 1.275+0.025

�0.035 GeV , mt = 173.1± 0.9 GeV ,

md = 4.7+0.5
�0.3 MeV , ms = 95+9

�3 MeV , mb = 4.18+0.04
�0.03 GeV . (26)

2.3 The interactions

Within the SM, the fermions have five types of interactions. These interactions are summarized in Ta-
ble 2. In the next few subsections, we explain the entries of this table.

2.3.1 EM and strong interactions
By construction, a local SU(3)C ⇥ U(1)EM symmetry survives the SSB. The SM has thus the photon
and gluon massless gauge fields. All charged fermions interact with the photon:

LQED, = �2e

3
uiA/ui +

e

3
diA/di + e`iA/`i , (27)

2See [1] for detailed explanations of the quoted quark masses. For q = u, d, s, c, b, mq are the running quark masses in the
MS scheme, with mu,d,s = mu,d,s(µ = 2 GeV) and mc,b = mc,b(µ = mc,b).

84

The SM spectrum

68

Admir Greljo | Lectures on EFT in flavour



Global flavour symmetries



•  sans Yukawaℒ4

ψ : 3 generations of qi, Ui, Di, li, Ei

U(3)q × U(3)U × U(3)D × U(3)l × U(3)E

70

gS ∼ 1, gW ∼ 0.6, gY ∼ 0.3, λH ∼ 0.2
θ ≲ 10−10 - The strong CP problem

Accidental symmetry

4

Global flavour symmetries
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Yukawas break U(3)5

71

4

Global flavour symmetries
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✓
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i

6
g
0
B

µ

◆
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i
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gsG
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2i
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◆
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@
µ +

i

2
gsG

µ

a�a �
i

3
g
0
B

µ

◆
DRi ,

D
µ
LLi =

✓
@
µ +

i

2
gW

µ

b
⌧b �

i

2
g
0
B

µ

◆
LLi ,

D
µ
ERi =

�
@
µ � ig

0
B

µ
�
ERi . (9)

Lkin is given by

LSM
kin = �1

4
G

µ⌫

a Gaµ⌫ �
1

4
W

µ⌫

b
Wbµ⌫ �

1

4
B

µ⌫
Bµ⌫

�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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• The kinetic Lagrangian (flavor and CP conserving)

Global flavour symmetries
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�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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• The kinetic Lagrangian (flavor and CP conserving)

Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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• Reminder:
U(1) : ϕ → eiαQϕ
ϕ†ϕ → ϕ†e−iαQeiαQϕ = ϕ†ϕ

• The kinetic Lagrangian (flavor and CP conserving)
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This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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• The global symmetry

• Reminder:
U(1) : ϕ → eiαQϕ
ϕ†ϕ → ϕ†e−iαQeiαQϕ = ϕ†ϕ

U(N ) = SU(N ) × U(1)
SU(N ) : group of N × N unitary matrices with det = 1

U†U = 1 , det U = 1

• The kinetic Lagrangian (flavor and CP conserving)
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This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by
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Y = Y
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ijQLi�DRj + Y
u

ijQLi�̃URj + Y
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ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:
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,
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where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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• Reminder:
U(1) : ϕ → eiαQϕ
ϕ†ϕ → ϕ†e−iαQeiαQϕ = ϕ†ϕ

U(N ) = SU(N ) × U(1)
SU(N ) : group of N × N unitary matrices with det = 1

U†U = 1 , det U = 1

U = eiαaTa a : 1,...,N2 − 1

ϕi → Uijϕj i, j : 1,...,N

ϕ†ϕ → ϕ†U†Uϕ = ϕ†ϕ

• The kinetic Lagrangian (flavor and CP conserving)
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• Flavour and CP violation is in the Yukawa Lagrangian

−ℒYuk = Q̄iYu
ijϕ̃Uj + Q̄iYd

ijϕDj + L̄iYe
ijϕEj

One can think of the quark Yukawa couplings as spurions that break the global SU(3)3q symmetry
(but are neutral under U(1)B),

Y
u ⇠ (3, 3̄, 1)SU(3)3q

, Y
d ⇠ (3, 1, 3̄)SU(3)3q

, (51)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2
`

symmetry (but are neutral
under U(1)e ⇥ U(1)µ ⇥ U(1)⌧ ),

Y
e ⇠ (3, 3̄)

SU(3)2
`

. (52)

The spurion formalism is convenient for several purposes: parameter counting (see below), identification
of flavor suppression factors (see Section 7), and the idea of minimal flavor violation (see Section 7.2).

2.5 Counting parameters

How many independent parameters are there in Lq

Yuk? The two Yukawa matrices, Y u and Y
d, are 3⇥ 3

and complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all of
them are, however, physical. The pattern of Gglobal breaking means that there is freedom to remove 9 real
and 17 imaginary parameters (the number of parameters in three 3⇥ 3 unitary matrices minus the phase
related to U(1)B). For example, we can use the unitary transformations QL ! VQQL, UR ! VUUR

and DR ! VDDR, to lead to the following interaction basis:

Y
d = �d, Y

u = V
†
�u , (53)

where �d,u are diagonal,

�d = diag(yd, ys, yb) , �u = diag(yu, yc, yt) , (54)

while V is a unitary matrix that depends on three real angles and one complex phase. We conclude that
there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis, we identify the
nine real parameters as six quark masses and three mixing angles, while the single phase is �KM.

How many independent parameters are there in L`

Yuk? The Yukawa matrix Y
e is 3 ⇥ 3 and

complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix. There is, however,
freedom to remove 6 real and 9 imaginary parameters (the number of parameters in two 3 ⇥ 3 unitary
matrices minus the phases related to U(1)3). For example, we can use the unitary transformations LL !
VLLL and ER ! VEER, to lead to the following interaction basis:

Y
e = �e = diag(ye, yµ, y⌧ ) . (55)

We conclude that there are 3 real lepton flavor parameters. In the mass basis, we identify these parameters
as the three charged lepton masses. We must, however, modify the model when we take into account the
evidence for neutrino masses.

3 The CKM matrix

Among the SM interactions, the W -mediated interactions are the only ones that are not diagonal. Conse-
quently, all flavor changing processes depend on the CKM parameters. The fact that there are only four
independent CKM parameters, while the number of measured flavor changing processes is much larger,
allows for stringent tests of the CKM mechanism for flavor changing processes.

3.1 Parametrization of the CKM matrix

The CKM matrix V is a 3⇥ 3 unitary matrix. Its form, however, is not unique:
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, (51)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2
`
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Y
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`
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as the three charged lepton masses. We must, however, modify the model when we take into account the
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Among the SM interactions, the W -mediated interactions are the only ones that are not diagonal. Conse-
quently, all flavor changing processes depend on the CKM parameters. The fact that there are only four
independent CKM parameters, while the number of measured flavor changing processes is much larger,
allows for stringent tests of the CKM mechanism for flavor changing processes.

3.1 Parametrization of the CKM matrix

The CKM matrix V is a 3⇥ 3 unitary matrix. Its form, however, is not unique:
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SVD: Singular value decomposition
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†

†

Yu = U†
QV† ̂YuUU

−ℒYuk = Q̄Yuϕ̃U + Q̄YdϕD + L̄YeϕE

Yd = U†
Q

̂YdUD

Ye = U†
L

̂YeUE
Unitary
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−ℒYuk = q̄V† ̂Yuϕ̃u + q̄ ̂Ydϕd + ℓ̄ ̂Yeϕe
*By  and SVD theoremG f

• Flavour symmetry G f = U(3)q × U(3)ℓ × U(3)u × U(3)d × U(3)e
*Fermionic kinetic terms

13 parameters
• 6 quark and 3 charged lepton masses

• The CKM: 3 angles + 1 CPV phase
Vij → ei(θi

u−θ j
d)Vij

•  equivalency classes, , etc.  physical parameters G f Yd ∼ UqYdU†
u ⟹ 54 → 13

Global flavour symmetries

• The Yukawa sector breaks G f → U(1)B × U(1)e × U(1)μ × U(1)τ
*Exact (classical) accidental 

symmetry of the SM
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−ℒYuk = q̄V† ̂Yuϕ̃U + q̄ ̂YdϕD + l̄ ̂YeϕE
[  transformation and a singular value decomposition theorem]U(3)5

Flavour Bases

*Suitable interaction basis
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[  transformation and a singular value decomposition theorem]U(3)5

• After EWSB, rotate from the interaction to the mass basis

As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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which tells us straightforwardly how to transform to the mass basis:

0

@
uL

cL

tL

1

A = V

0

@
udL

usL

ubL

1

A . (36)

Using Eq. (36), we obtain the form of the W interactions (34) in the mass basis:

� gp
2

�
uL cL tL

�
V W/

+

0

@
dL

sL

bL

1

A+ h.c. . (37)

You can easily convince yourself that we would have obtained the same form starting from any arbitrary
interaction basis. We remind you that

V = VuLV
†
dL

(38)

is basis independent. The matrix V is called the CKM matrix [2, 3].
Similarly to the leptons, only left-handed quarks take part in charged-current interactions and,

consequently, parity is violated by these interactions. But then there is an important difference:

1. The W couplings to the quark mass eigenstates are neither universal nor diagonal. The universality
of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we obtain the
following predictions for the W decays:

�(W+ ! `
+
⌫`) / 1 ,

�(W+ ! uidj) / 3|Vij |2 (i = 1, 2; j = 1, 2, 3) . (39)

The top quark is not included because it is heavier than the W boson. Taking this fact into account, and
the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , (40)

we obtain
�(W ! hadrons)/�(W ! leptons) ⇡ 2 . (41)

Experimentally

BR((W ! leptons) = (32.40± 0.27)% BR((W ! hadrons) = (67.60± 0.27)% , (42)

which leads to
�(W ! hadrons)/�(W ! leptons) = 2.09± 0.1 , (43)

which. taking into account radiative corrections, is in beautiful agreement with the SM prediction. The
(hidden) universality within the quark sector is tested by the prediction

�(W ! uX) = �(W ! cX) =
1

2
�(W ! hadrons) . (44)

Experimentally,
�(W ! cX)/�(W ! hadrons) = 0.49± 0.04 . (45)
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−ℒYuk = q̄V† ̂Yuϕ̃U + q̄ ̂YdϕD + l̄ ̂YeϕE

Flavour Bases
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[  transformation and a singular value decomposition theorem]U(3)5

As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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which tells us straightforwardly how to transform to the mass basis:

0

@
uL

cL

tL

1

A = V

0

@
udL

usL

ubL

1

A . (36)

Using Eq. (36), we obtain the form of the W interactions (34) in the mass basis:

� gp
2

�
uL cL tL

�
V W/

+

0

@
dL

sL

bL

1

A+ h.c. . (37)

You can easily convince yourself that we would have obtained the same form starting from any arbitrary
interaction basis. We remind you that

V = VuLV
†
dL

(38)

is basis independent. The matrix V is called the CKM matrix [2, 3].
Similarly to the leptons, only left-handed quarks take part in charged-current interactions and,

consequently, parity is violated by these interactions. But then there is an important difference:

1. The W couplings to the quark mass eigenstates are neither universal nor diagonal. The universality
of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we obtain the
following predictions for the W decays:

�(W+ ! `
+
⌫`) / 1 ,

�(W+ ! uidj) / 3|Vij |2 (i = 1, 2; j = 1, 2, 3) . (39)

The top quark is not included because it is heavier than the W boson. Taking this fact into account, and
the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , (40)

we obtain
�(W ! hadrons)/�(W ! leptons) ⇡ 2 . (41)

Experimentally

BR((W ! leptons) = (32.40± 0.27)% BR((W ! hadrons) = (67.60± 0.27)% , (42)

which leads to
�(W ! hadrons)/�(W ! leptons) = 2.09± 0.1 , (43)

which. taking into account radiative corrections, is in beautiful agreement with the SM prediction. The
(hidden) universality within the quark sector is tested by the prediction

�(W ! uX) = �(W ! cX) =
1

2
�(W ! hadrons) . (44)

Experimentally,
�(W ! cX)/�(W ! hadrons) = 0.49± 0.04 . (45)
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•   universality!V1V† = 1 ⟹ ūi
LZ/ ui

L

No FCNC at tree-level ! 
They are suppressed in the SM.

• It only appears in the  interactions, not in ūLVγμdLWμ γ, g, Z, h

−ℒYuk = q̄V† ̂Yuϕ̃U + q̄ ̂YdϕD + l̄ ̂YeϕE

• After EWSB, rotate from the interaction to the mass basis

Flavour Bases
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qi

qi

�, Z

qi

qi

g

qi

qi

h

dj

ui

W

Vij

Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the

5

• Flavour universal  
/ blind

• Flavour diagonal 
non-universal

• Flavour changing  
/ violating

The SM interactions
• Universality of  interactions is guaranteed by the unbroken QCD x QED in any extension of the SM. 

• However, the  universality is an accident of the SM field content.

• Eg. add a heavy vector-like quark weak singlet 

γ, g
Z

(UL, UR)Y=2/3
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0
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1 0 0
0 c23 s23
0 �s23 c23

1
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0
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1

A

0

@
c12 s12 0
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0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the

5

• Flavour universal  
/ blind

• Flavour diagonal 
non-universal

• Flavour changing  
/ violating

As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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PDG

The SM interactions
• Universality of  interactions is guaranteed by the unbroken QCD x QED in any extension of the SM. 

• However, the  universality is an accident of the SM field content.

• Eg. add a heavy vector-like quark weak singlet 

γ, g
Z

(UL, UR)Y=2/3
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the

5

• Flavour universal  
/ blind

• Flavour diagonal 
non-universal, 
∝ mf

• Flavour changing  
/ violating

The SM interactions

Admir Greljo | Lectures on EFT in flavour



88

qi

qi

�, Z

qi

qi

g

qi

qi

h

dj

ui

W

Vij

Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0
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�s12 c12 0
0 0 1
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s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the
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(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•Permutations: fixed by ordering the up and the down quarks by their masses

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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A�
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2 + 1
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2
�
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1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•Rephasing: Vij → ei(θi
u−θ j

d)Vij
Vij = (+1, − 1) spurion under U(1)ui

× U(1)dj

ℒ ⊃
g

2
ūi

LVijγμdj
L Wμ

•There is a single physical phase δ

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e
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�s12c23 � c12s23s13e
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•Permutations: fixed by ordering the up and the down quarks by their masses

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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�
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•Rephasing: Vij → ei(θi
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Vij = (+1, − 1) spurion under U(1)ui
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ℒ ⊃
g

2
ūi
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L Wμ

•There is a single physical phase δ
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•Permutations: fixed by ordering the up and the down quarks by their masses
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Fig. 3: Representative tree level charged current diagram (left) and a loop induced FCNC diagram (right).

In fact, for processes at colliders in many cases the CKM matrix can even be approximated as

VCKM ⇠

0

@
1 0 0
0 1 0
0 0 1

1

A , [collider physicist] (26)

i.e., for many processes at high pT to a good enough precision the generation number is conserved.
We, on the other hand, are interested precisely in the off-diagonal entries in VCKM. These entries

roughly obey a power scaling in � ⌘ |Vus| ' 0.22, giving the Wolfenstein parametrization of the CKM
matrix [17],

VCKM =

0

@
1 � �2/2 � A�3(⇢� i⌘)

�� 1 � �2/2 A�2

A�3(1 � ⇢� i⌘) �A�2 1

1

A + O
�
�4

�
. (27)

This parametrization also encodes that the CKM matrix is unitary, V †
CKM

VCKM = VCKMV †
CKM

= 1.
The CKM matrix depends on 3 real parameters and 1 phase. In parametrization of Eq. (21) these were
the three mixing angles and the phase �. In the Wolfenstein parametrization, Eq. (27), these are the three
real parameters �, A, ⇢, and one imaginary parameter, ⌘, all counted as being O(1). A global fit to the
flavour observables gives [18]

A = 0.825(9), � = 0.2251(3), ⇢̄ = 0.160(7), ⌘̄ = 0.350(6), (28)

where the modified ⇢, ⌘ parameters were introduced as ⇢̄ + i⌘̄ = �VudV ⇤
ub

/(VcdV ⇤
cb

), valid to all orders
in �. To O(�4) we have ⇢̄ = ⇢(1 � �2/2) and ⌘̄ = ⌘(1 � �2/2). Note that numerically ⇢̄, ⌘̄ are maybe
closer to ⇢̄, ⌘̄ ⇠ O(�) than ⇢̄, ⌘̄ ⇠ O(1), while at the time when Wolfenstein parametrization was written
down this was not known. This can be incorporated in modified expansions [19], though the change in
counting only matters at higher orders, not for the leading order expressions in Eq. (27).

2.8 Origin of CP violation in the SM
The SM Lagrangian is invariant under the discrete CP symmetry, apart from the Yukawa terms.1 These
transform as (writing explicitly also the hermitian conjugate terms)

Yij ̄
i

LH j

R
+ Y ⇤

ij ̄
j

R
H† i

L

CP�! Yij ̄
j

R
H† i

L + Y ⇤
ij ̄

i

LH j

R
. (29)

The CP is conserved, if Yukawa couplings are real,

Y ⇤
ij = Yij . (30)

Since there is only one physical phase in the CKM, in the SM the CP violation (CPV) is controlled by
one parameter, the “CKM phase”, which in the Wolfenstein parametrization is the parameter ⌘. CP is

1There is another CP violating parameter, the strong CP phase multiplying the QCD anomaly term, g2/(32⇡2)✓Gaµ⌫G̃a
µ⌫ .

It is bounded experimentally to be small, ✓ . 10�10 and, even if eventually found to be nonzero, is negligible for all the
processes discussed in these lectures.
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real parameters �, A, ⇢, and one imaginary parameter, ⌘, all counted as being O(1). A global fit to the
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The SM success
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Fig. 3: Allowed region in the ⇢, ⌘ plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub|), mass differences in the B

0 (�md) and Bs (�ms) neutral meson systems, and CP violation in
K ! ⇡⇡ ("K), B !  K (sin 2�), B ! ⇡⇡, ⇢⇡, ⇢⇢ (↵), and B ! DK (�). Taken from [12].

– The rates of various B ! ⇡⇡, ⇢⇡, ⇢⇢ decays depend on the phase ↵ = ⇡ � � � �

– The ratio between the mass splittings in the neutral B and Bs systems is sensitive to |Vtd/Vts|2 =
�
2[(1� ⇢)2 + ⌘

2]

– The CP violation in K ! ⇡⇡ decays, ✏K , depends in a complicated way on ⇢ and ⌘ .

The resulting constraints are shown in Fig. 3.
The consistency of the various constraints is impressive. In particular, the following ranges for ⇢

and ⌘ can account for all the measurements [1]:

⇢ = +0.160± 0.007 , ⌘ = +0.350± 0.006 . (111)

One can make then the following statements [13]:
Very likely, flavor changing processes are dominated by the Cabibbo-Kobayashi-Maskawa mecha-

nism and, in particular, CP violation in flavor changing processes is dominated by the Kobayashi-

Maskawa phase.

In the following subsections, we explain how we can remove the phrase “very likely” from this
statement, and how we can quantify the KM-dominance.

6.2 S KS

As an example of how to use FCNC in probing new physics, we take S KS
. When we consider extensions

of the SM, we still do not expect any significant new contribution to the tree level decay, b ! cc̄s,
beyond the SM W -mediated diagram. Thus, the expression Ā KS

/A KS
= (VcbV

⇤
cd
)/(V ⇤

cb
Vcd) remains

102
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 sans Yukawa:ℒSM
4 U(3)q × U(3)U × U(3)D × U(3)l × U(3)E

 Accidental symmetriesℒ4 :
Admir Greljo | Lectures on EFT in flavour



95

 sans Yukawa:ℒSM
4 U(3)q × U(3)U × U(3)D × U(3)l × U(3)E

 Accidental symmetriesℒ4 :

−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE
[  transformation and a singular value decomposition theorem]U(3)5
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No proton decay nor cLFV

 :ℒSM
4

 sans Yukawa:ℒSM
4 U(3)q × U(3)U × U(3)D × U(3)l × U(3)E

U(1)B × U(1)e × U(1)μ × U(1)τ

 Accidental symmetriesℒ4 :

Experiment: τp ≳ 1034 years, BR(μ → eγ) ≲ 10−13, . . .
Prediction:

−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE
[  transformation and a singular value decomposition theorem]U(3)5
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No proton decay nor cLFV

 :ℒSM
4

 sans Yukawa:ℒSM
4 U(3)q × U(3)U × U(3)D × U(3)l × U(3)E

U(1)B × U(1)e × U(1)μ × U(1)τ

 Accidental symmetriesℒ4 :

•  truncation at the   Exact accidental symmetries

• Peculiar observed values of   Approximate accidental symmetries  
      

Λ−1
NP [ℒSMEFT] ≤ 4 ⟹

Yu,d,e ⟹

Experiment: τp ≳ 1034 years, BR(μ → eγ) ≲ 10−13, . . .
Prediction:

−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE
[  transformation and a singular value decomposition theorem]U(3)5

[Mass hierarchy & CKM alignment] [Quark flavour, CP, etc]
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U(1)B × U(1)e × U(1)μ × U(1)τ

 Accidental symmetriesℒ4 :

•  truncation at the   Exact accidental symmetries

• Peculiar observed values of   Approximate accidental symmetries  
      

Λ−1
NP [ℒSMEFT] ≤ 4 ⟹

Yu,d,e ⟹

Experiment: τp ≳ 1034 years, BR(μ → eγ) ≲ 10−13, . . .
Prediction:

−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE
[  transformation and a singular value decomposition theorem]U(3)5

[Mass hierarchy & CKM alignment] [Quark flavour, CP, LFU, etc]
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• Important to understand the SM 
phenomenology:  
 
- isospin, SU(3), heavy-quark symmetries, GIM, … 

Alhambra of Granada

• Flavour patterns observed in the Yukawa sector 
 Approximate flavour symmetries in the SM⟹

Bottom-up:  
The largest parameter  breaks 

, etc…
yt = Yu

33 ∼ 1
U(3)q × U(3)u → U(2)2 × U(1)

• Stringent tests of the SM  
— a window to new physics.

1

2

Patterns <> Symmetries

Admir Greljo | Lectures on EFT in flavour

Selection rules
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 Approximate symmetriesℒ4 :

Approximate Quark Flavor Conservation:

Admir Greljo | Lectures on EFT in flavourAdmir Greljo | Lectures on EFT in flavour

Vij = (+1, − 1) spurion under U(1)ui
× U(1)djdi

d̄i

dj

d̄j

∼ (VkiV*kj)
2

ΔF = 2: (d̄jPLγμdi)2

• Symmetry covariance

i ≠ j
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 Approximate symmetriesℒ4 :

Approximate Quark Flavor Conservation:

• When  => , no FV. In reality, V = 1 U(1)u+d × U(1)c+s × U(1)t+b
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Vij = (+1, − 1) spurion under U(1)ui
× U(1)djdi

d̄i

dj

d̄j

∼ (VkiV*kj)
2

ΔF = 2: (d̄jPLγμdi)2

• Symmetry covariance

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)

91

0.23 0.22 0.2

i ≠ j
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 Approximate symmetriesℒ4 :

Approximate Quark Flavor Conservation:

• When  => , no FV. In reality, V = 1 U(1)u+d × U(1)c+s × U(1)t+b

• GIM mechanism: When up or down-quark masses are degenerate, i.e.  or , 
no FV.

̂Yu ∝ 1 ̂Yd ∝ 1

−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE

 If , rotate , and vice versa⟹ ̂Yd ∝ 1 q → V†q, D → V†D
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Vij = (+1, − 1) spurion under U(1)ui
× U(1)djdi

d̄i

dj

d̄j

∼ (VkiV*kj)
2

ΔF = 2: (d̄jPLγμdi)2

• Symmetry covariance

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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• Approximate CP

The CKM alignment

Jarlskog invariant: 
ℒ ⊃

g

2
ūi

LVijγμdj
L Wμ

Vij → ei(θi
u−θ j

d)Vij

 Approximate symmetriesℒ4 :
Admir Greljo | Lectures on EFT in flavourAdmir Greljo | Lectures on EFT in flavour



104

• Approximate CP

The CKM alignment

Jarlskog invariant: 
ℒ ⊃

g

2
ūi

LVijγμdj
L Wμ

Vij → ei(θi
u−θ j

d)Vij

Experiment:
SM:

Example: Electron electric dipole moment

2109.15085

•   higher loop suppression
• Chirality flips  The mass hierarchy suppression

J →
→

 Approximate symmetriesℒ4 :
Admir Greljo | Lectures on EFT in flavourAdmir Greljo | Lectures on EFT in flavour



• Accidental symmetries (exact and approximate) are 
broken by the irrelevant couplings / new physics. 

• Testing accidental symmetries is an opportunity  
 Efficient probe of high-energy dynamics.⟹

Admir Greljo | Flavour PhysicsAdmir Greljo | Lectures on EFT in flavour
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Standard Model Effective Field Theory



Beyond the SM

109

?

2. Yet, many open questions:  
 
Hierarchy problem 
Flavour puzzle 
Strong CP problem 
Charge quantization 
 
Neutrino masses 
Dark matter 
Baryon asymmetry    
Inflation 
 
Dark energy 
Quantum gravity 
…. 

1. The SM: Experimental success!

Confusing situation!

γ

γ

Kε

Kε

α

α

dm∆

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xclu

d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

ICHEP 16

CKM
f i t t e r

Fig. 3: Allowed region in the ⇢, ⌘ plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub|), mass differences in the B

0 (�md) and Bs (�ms) neutral meson systems, and CP violation in
K ! ⇡⇡ ("K), B !  K (sin 2�), B ! ⇡⇡, ⇢⇡, ⇢⇢ (↵), and B ! DK (�). Taken from [12].

– The rates of various B ! ⇡⇡, ⇢⇡, ⇢⇢ decays depend on the phase ↵ = ⇡ � � � �

– The ratio between the mass splittings in the neutral B and Bs systems is sensitive to |Vtd/Vts|2 =
�
2[(1� ⇢)2 + ⌘

2]

– The CP violation in K ! ⇡⇡ decays, ✏K , depends in a complicated way on ⇢ and ⌘ .

The resulting constraints are shown in Fig. 3.
The consistency of the various constraints is impressive. In particular, the following ranges for ⇢

and ⌘ can account for all the measurements [1]:

⇢ = +0.160± 0.007 , ⌘ = +0.350± 0.006 . (111)

One can make then the following statements [13]:
Very likely, flavor changing processes are dominated by the Cabibbo-Kobayashi-Maskawa mecha-

nism and, in particular, CP violation in flavor changing processes is dominated by the Kobayashi-

Maskawa phase.

In the following subsections, we explain how we can remove the phrase “very likely” from this
statement, and how we can quantify the KM-dominance.

6.2 S KS

As an example of how to use FCNC in probing new physics, we take S KS
. When we consider extensions

of the SM, we still do not expect any significant new contribution to the tree level decay, b ! cc̄s,
beyond the SM W -mediated diagram. Thus, the expression Ā KS

/A KS
= (VcbV

⇤
cd
)/(V ⇤

cb
Vcd) remains

102
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1. Short-distance NP can address the open problems of the SM,
2. No clearly preferred BSM model,
3. SMEFT explains why the SM works so well: Limited experimental 

precision and energy so far,
4. Experiments will tremendously increase the luminosity.

BSM1
BSM2

BSM3

……

UV

IRSM EFT

Renormalisation 
flow

110

[ultraviolet]

[infrared]

… reinforced by the current 
experimental situation

SMEFT
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The mass gap is explained if Λν ≫ vEW

u

c

d
s

t
b

10−8

102

10−6

10−4

10−2

1

ν1
ν2 ν3

e
μ
τ

10−10

10−12

10−14

 - The first SMEFT’s success?dim 5

where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write d⌦c.m. = 2⇡ sin ✓c.m. d✓c.m. ,
where ✓c.m. is the scattering angle in the center of mass frame.

• Compute the total cross section for 2 ! 2 scattering in �
4 theory in the center-of-mass

frame at a given center-of-mass energy.

As a final exercise, evaluate the cross section for e+e� ! µ
+
µ
� following from

1

4

X

sA,sB ,r1,r2

|M |2 = 2e4
t
2 + u

2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,�1)
p1 = E(1, sin ✓, 0, cos ✓), p2 = E(1,� sin ✓, 0,� cos ✓)

. (12)

• Show that the di↵erential muon production cross section is

d�

d⌦
=

↵
2
em

4s

�
1 + cos2 ✓

�
, ↵em ⌘ e

2

4⇡
, (13)

and sketch the physical meaning of this result.

• Show that the total cross section reads

� =
4⇡↵2

em

3s
. (14)

�LSM � q̄iY
ij
u ujH̃ + q̄iY

ij
d djH + ¯̀

iY
ij
e ejH (15)

�LSMEFT � 1

⇤⌫
`iY

ij
⌫ `jHH (16)

3

*Picture to be confirmed experimentally 

( )ΔL = 2
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• Price to be paid to capture IR effects of a general short-distance BSM
• Organising principle: Symmetries

SMEFT is challenging!

112

1512.03433



113

 - Fermionic operatorsdim 6

Admir Greljo | Lectures on EFT in flavour

Grzadkowski et al, 1008.4884

Proton decay

ℒ6 ⊃
1

Λ2
qqqℓ Λ > 1012 TeV
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 - Fermionic operatorsdim 6

Admir Greljo | Lectures on EFT in flavour

Grzadkowski et al, 1008.4884

Impose B symmetry



 is still challenging!dim 6

115

• Price for generality: Large number of independent parameters!

• 2499 at  ( )
• Why? (Partially due to) FLAVOUR

• If there was a single generation => 59

dim[𝒪] = 6 ΔB = ΔL = 0

Grzadkowski et al, 1008.4884

i = 1,2,3

Admir Greljo | Lectures on EFT in flavour



Im(�d) = �0.11+0.11
�0.05 . (117)

This can be translated into the following approximate (one sigma) upper bounds:

|MNP
BB̄

/M
SM
BB̄

| ⇠< 0.2 ,

Im(MNP
BB̄

/M
SM
BB̄

) ⇠< 0.1 . (118)

We can make the following two statements:

1. A new physics contribution to B
0 �B

0
mixing amplitude that carries a phase that is signifi-

cantly different from the KM phase is constrained to lie below the 10% level.

2. A new physics contribution to the B
0 � B

0
mixing amplitude which is aligned with the KM

phase is constrained to lie below the 20% level.

Analogous upper bounds can be obtained for new physics contributions to the K0�K
0, B0

s �B
0
s ,

and D
0 �D

0 mixing amplitudes.

7 The new physics flavor puzzle

7.1 A model independent discussion

It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ⇠ 1019

GeV;
2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above

mseesaw ⇠ 1015 GeV;
3. The fine-tuning problem of the Higgs mass and the puzzle of the dark matter suggest that the scale

where the SM is replaced with a more fundamental theory is actually much lower, mtop�partners,
mwimp ⇠< a few TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must be added to
LSM. These are terms of dimension higher than four in the fields which, therefore, have couplings that
are inversely proportional to the scale of new physics ⇤NP.

The lowest dimension non-renormalizable terms are dimension-five:

� Ldim�5
Seesaw =

Z
⌫

ij

⇤NP
LLiLLj��+ h.c. . (119)

These are the seesaw terms, leading to neutrino masses.
Exercise 5: How does the global symmetry breaking pattern (47) change when (119) is taken into

account?

Exercise 6: What is the number of physical lepton flavor parameters in this case? Identify these

parameters in the mass basis.

As concerns quark flavor physics, consider, for example, the following dimension-six set of oper-
ators:

Ldim�6
�F=2 =

X

i 6=j

zij

⇤2
(QLi�µQLj)

2
, (120)

where the zij are dimensionless couplings. These terms contribute to the mass splittings between the
corresponding two neutral mesons. For example, the term L�B=2 / (dL�µbL)2 contributes to �mB ,
the mass difference between the two neutral B-mesons. We use

M
NP
BB̄

=
1

6

zdb

⇤2
mBf

2
BBB . (121)

105

 The NP flavour problemℒ6 :

• Can be modified by NP:

116
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Table 6: Lower bounds on the scale of new physics ⇤, in units of TeV, for |zij | = 1, and upper bounds on zij ,
assuming ⇤ = 1 TeV.

Operator ⇤ [TeV] CPC ⇤ [TeV] CPV |zij | Im(zij) Observables
(s̄L�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK ; ✏K

(s̄RdL)(s̄LdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK ; ✏K
(c̄L�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD; A�

(c̄RuL)(c̄LuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD; A�

(b̄L�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mB; S K
(b̄RdL)(b̄LdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mB; S K
(b̄L�µsL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs

; S �
(b̄RsL)(b̄LsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs

; S �

Analogous expressions hold for the other neutral mesons. Taking into account the bounds of Eq. (118),
we obtain

|zdb|
⇤2

<
2.3⇥ 10�6

TeV2 ,
Im(zdb)

⇤2
<

1.1⇥ 10�6

TeV2 . (122)

A more detailed list of the bounds derived from the �F = 2 observables in Table 5 is given in
Table 6. The bounds refer to two representative sets of dimension-six operators: (i) left-left operators,
that are also present in the SM, and (ii) operators with different chirality, where the bounds are strongest
because of larger hadronic matrix elements.

The first lesson that we draw from these bounds on ⇤ is that new physics can contribute to FCNC at
a level comparable to the SM contributions even if it takes place at a scale that is six orders of magnitude
above the electroweak scale. A second lesson is that if the new physics has a generic flavor structure,
that is zij = O(1), then its scale must be above 104 � 105 TeV (or, if the leading contributions involve
electroweak loops, above 103� 104 TeV). If indeed ⇤ � TeV , it means that we have misinterpreted the

hints from the fine-tuning problem and the dark matter puzzle.

A different lesson can be drawn from the bounds on zij . It could be that the scale of new physics

is of order TeV, but its flavor structure is far from generic. Specifically, if new particles at the TeV scale
couple to the SM fermions, then there are two ways in which their contributions to FCNC processes,
such as neutral meson mixing, can be suppressed: degeneracy and alignment. Either of these principles,
or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-
nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons). Thus,
the scale is ⇤SM ⇠ mW . Since the leading contributions to neutral meson mixings come from box dia-
grams, the zij coefficients are suppressed by ↵

2
2. To identify the relevant flavor suppression factor, one

can employ the spurion formalism. For example, the flavor transition that is relevant to B
0 �B

0 mixing
involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then be proportional to
(Y u

Y
u†)13 / y

2
t VtbV

⇤
td

. Indeed, an explicit calculation (using VIA for the matrix element and neglecting
QCD corrections) gives5

2M
BB̄

mB

⇡ �↵
2
2

12

f
2
B

m
2
W

S0(xt)(VtbV
⇤
td
)2 , (123)

where xi = m
2
i
/m

2
W

and

S0(x) =
x

(1� x)2


1� 11x

4
+

x
2

4
� 3x2 lnx

2(1� x)

�
. (124)

5A detailed derivation can be found in Appendix B of [16].
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Table 6: Lower bounds on the scale of new physics ⇤, in units of TeV, for |zij | = 1, and upper bounds on zij ,
assuming ⇤ = 1 TeV.

Operator ⇤ [TeV] CPC ⇤ [TeV] CPV |zij | Im(zij) Observables
(s̄L�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK ; ✏K

(s̄RdL)(s̄LdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK ; ✏K
(c̄L�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD; A�

(c̄RuL)(c̄LuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD; A�

(b̄L�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mB; S K
(b̄RdL)(b̄LdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mB; S K
(b̄L�µsL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs

; S �
(b̄RsL)(b̄LsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs

; S �

Analogous expressions hold for the other neutral mesons. Taking into account the bounds of Eq. (118),
we obtain

|zdb|
⇤2

<
2.3⇥ 10�6

TeV2 ,
Im(zdb)

⇤2
<

1.1⇥ 10�6

TeV2 . (122)

A more detailed list of the bounds derived from the �F = 2 observables in Table 5 is given in
Table 6. The bounds refer to two representative sets of dimension-six operators: (i) left-left operators,
that are also present in the SM, and (ii) operators with different chirality, where the bounds are strongest
because of larger hadronic matrix elements.

The first lesson that we draw from these bounds on ⇤ is that new physics can contribute to FCNC at
a level comparable to the SM contributions even if it takes place at a scale that is six orders of magnitude
above the electroweak scale. A second lesson is that if the new physics has a generic flavor structure,
that is zij = O(1), then its scale must be above 104 � 105 TeV (or, if the leading contributions involve
electroweak loops, above 103� 104 TeV). If indeed ⇤ � TeV , it means that we have misinterpreted the

hints from the fine-tuning problem and the dark matter puzzle.

A different lesson can be drawn from the bounds on zij . It could be that the scale of new physics

is of order TeV, but its flavor structure is far from generic. Specifically, if new particles at the TeV scale
couple to the SM fermions, then there are two ways in which their contributions to FCNC processes,
such as neutral meson mixing, can be suppressed: degeneracy and alignment. Either of these principles,
or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-
nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons). Thus,
the scale is ⇤SM ⇠ mW . Since the leading contributions to neutral meson mixings come from box dia-
grams, the zij coefficients are suppressed by ↵

2
2. To identify the relevant flavor suppression factor, one

can employ the spurion formalism. For example, the flavor transition that is relevant to B
0 �B

0 mixing
involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then be proportional to
(Y u

Y
u†)13 / y

2
t VtbV

⇤
td

. Indeed, an explicit calculation (using VIA for the matrix element and neglecting
QCD corrections) gives5
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5A detailed derivation can be found in Appendix B of [16].
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This can be translated into the following approximate (one sigma) upper bounds:

|MNP
BB̄

/M
SM
BB̄

| ⇠< 0.2 ,

Im(MNP
BB̄

/M
SM
BB̄

) ⇠< 0.1 . (118)

We can make the following two statements:

1. A new physics contribution to B
0 �B

0
mixing amplitude that carries a phase that is signifi-

cantly different from the KM phase is constrained to lie below the 10% level.

2. A new physics contribution to the B
0 � B

0
mixing amplitude which is aligned with the KM

phase is constrained to lie below the 20% level.

Analogous upper bounds can be obtained for new physics contributions to the K0�K
0, B0

s �B
0
s ,

and D
0 �D

0 mixing amplitudes.

7 The new physics flavor puzzle

7.1 A model independent discussion

It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ⇠ 1019

GeV;
2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above

mseesaw ⇠ 1015 GeV;
3. The fine-tuning problem of the Higgs mass and the puzzle of the dark matter suggest that the scale

where the SM is replaced with a more fundamental theory is actually much lower, mtop�partners,
mwimp ⇠< a few TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must be added to
LSM. These are terms of dimension higher than four in the fields which, therefore, have couplings that
are inversely proportional to the scale of new physics ⇤NP.

The lowest dimension non-renormalizable terms are dimension-five:

� Ldim�5
Seesaw =

Z
⌫

ij

⇤NP
LLiLLj��+ h.c. . (119)

These are the seesaw terms, leading to neutrino masses.
Exercise 5: How does the global symmetry breaking pattern (47) change when (119) is taken into

account?

Exercise 6: What is the number of physical lepton flavor parameters in this case? Identify these

parameters in the mass basis.

As concerns quark flavor physics, consider, for example, the following dimension-six set of oper-
ators:

Ldim�6
�F=2 =

X

i 6=j

zij

⇤2
(QLi�µQLj)

2
, (120)

where the zij are dimensionless couplings. These terms contribute to the mass splittings between the
corresponding two neutral mesons. For example, the term L�B=2 / (dL�µbL)2 contributes to �mB ,
the mass difference between the two neutral B-mesons. We use

M
NP
BB̄

=
1

6

zdb

⇤2
mBf

2
BBB . (121)
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Table 6: Lower bounds on the scale of new physics ⇤, in units of TeV, for |zij | = 1, and upper bounds on zij ,
assuming ⇤ = 1 TeV.

Operator ⇤ [TeV] CPC ⇤ [TeV] CPV |zij | Im(zij) Observables
(s̄L�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK ; ✏K

(s̄RdL)(s̄LdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK ; ✏K
(c̄L�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD; A�

(c̄RuL)(c̄LuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD; A�

(b̄L�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mB; S K
(b̄RdL)(b̄LdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mB; S K
(b̄L�µsL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs

; S �
(b̄RsL)(b̄LsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs

; S �

Analogous expressions hold for the other neutral mesons. Taking into account the bounds of Eq. (118),
we obtain

|zdb|
⇤2

<
2.3⇥ 10�6

TeV2 ,
Im(zdb)

⇤2
<

1.1⇥ 10�6

TeV2 . (122)

A more detailed list of the bounds derived from the �F = 2 observables in Table 5 is given in
Table 6. The bounds refer to two representative sets of dimension-six operators: (i) left-left operators,
that are also present in the SM, and (ii) operators with different chirality, where the bounds are strongest
because of larger hadronic matrix elements.

The first lesson that we draw from these bounds on ⇤ is that new physics can contribute to FCNC at
a level comparable to the SM contributions even if it takes place at a scale that is six orders of magnitude
above the electroweak scale. A second lesson is that if the new physics has a generic flavor structure,
that is zij = O(1), then its scale must be above 104 � 105 TeV (or, if the leading contributions involve
electroweak loops, above 103� 104 TeV). If indeed ⇤ � TeV , it means that we have misinterpreted the

hints from the fine-tuning problem and the dark matter puzzle.

A different lesson can be drawn from the bounds on zij . It could be that the scale of new physics

is of order TeV, but its flavor structure is far from generic. Specifically, if new particles at the TeV scale
couple to the SM fermions, then there are two ways in which their contributions to FCNC processes,
such as neutral meson mixing, can be suppressed: degeneracy and alignment. Either of these principles,
or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-
nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons). Thus,
the scale is ⇤SM ⇠ mW . Since the leading contributions to neutral meson mixings come from box dia-
grams, the zij coefficients are suppressed by ↵

2
2. To identify the relevant flavor suppression factor, one

can employ the spurion formalism. For example, the flavor transition that is relevant to B
0 �B

0 mixing
involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then be proportional to
(Y u

Y
u†)13 / y

2
t VtbV

⇤
td

. Indeed, an explicit calculation (using VIA for the matrix element and neglecting
QCD corrections) gives5
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)2 , (123)
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5A detailed derivation can be found in Appendix B of [16].
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Table 6: Lower bounds on the scale of new physics ⇤, in units of TeV, for |zij | = 1, and upper bounds on zij ,
assuming ⇤ = 1 TeV.
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(s̄L�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK ; ✏K

(s̄RdL)(s̄LdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK ; ✏K
(c̄L�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD; A�

(c̄RuL)(c̄LuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD; A�

(b̄L�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mB; S K
(b̄RdL)(b̄LdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mB; S K
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; S �
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Analogous expressions hold for the other neutral mesons. Taking into account the bounds of Eq. (118),
we obtain
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A more detailed list of the bounds derived from the �F = 2 observables in Table 5 is given in
Table 6. The bounds refer to two representative sets of dimension-six operators: (i) left-left operators,
that are also present in the SM, and (ii) operators with different chirality, where the bounds are strongest
because of larger hadronic matrix elements.

The first lesson that we draw from these bounds on ⇤ is that new physics can contribute to FCNC at
a level comparable to the SM contributions even if it takes place at a scale that is six orders of magnitude
above the electroweak scale. A second lesson is that if the new physics has a generic flavor structure,
that is zij = O(1), then its scale must be above 104 � 105 TeV (or, if the leading contributions involve
electroweak loops, above 103� 104 TeV). If indeed ⇤ � TeV , it means that we have misinterpreted the

hints from the fine-tuning problem and the dark matter puzzle.

A different lesson can be drawn from the bounds on zij . It could be that the scale of new physics

is of order TeV, but its flavor structure is far from generic. Specifically, if new particles at the TeV scale
couple to the SM fermions, then there are two ways in which their contributions to FCNC processes,
such as neutral meson mixing, can be suppressed: degeneracy and alignment. Either of these principles,
or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-
nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons). Thus,
the scale is ⇤SM ⇠ mW . Since the leading contributions to neutral meson mixings come from box dia-
grams, the zij coefficients are suppressed by ↵

2
2. To identify the relevant flavor suppression factor, one

can employ the spurion formalism. For example, the flavor transition that is relevant to B
0 �B

0 mixing
involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then be proportional to
(Y u

Y
u†)13 / y

2
t VtbV

⇤
td

. Indeed, an explicit calculation (using VIA for the matrix element and neglecting
QCD corrections) gives5

2M
BB̄

mB

⇡ �↵
2
2

12

f
2
B

m
2
W

S0(xt)(VtbV
⇤
td
)2 , (123)

where xi = m
2
i
/m

2
W

and

S0(x) =
x

(1� x)2


1� 11x

4
+

x
2

4
� 3x2 lnx

2(1� x)

�
. (124)

5A detailed derivation can be found in Appendix B of [16].
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This can be translated into the following approximate (one sigma) upper bounds:

|MNP
BB̄

/M
SM
BB̄

| ⇠< 0.2 ,

Im(MNP
BB̄

/M
SM
BB̄

) ⇠< 0.1 . (118)

We can make the following two statements:

1. A new physics contribution to B
0 �B

0
mixing amplitude that carries a phase that is signifi-

cantly different from the KM phase is constrained to lie below the 10% level.

2. A new physics contribution to the B
0 � B

0
mixing amplitude which is aligned with the KM

phase is constrained to lie below the 20% level.

Analogous upper bounds can be obtained for new physics contributions to the K0�K
0, B0

s �B
0
s ,

and D
0 �D

0 mixing amplitudes.

7 The new physics flavor puzzle

7.1 A model independent discussion

It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ⇠ 1019

GeV;
2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above

mseesaw ⇠ 1015 GeV;
3. The fine-tuning problem of the Higgs mass and the puzzle of the dark matter suggest that the scale

where the SM is replaced with a more fundamental theory is actually much lower, mtop�partners,
mwimp ⇠< a few TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must be added to
LSM. These are terms of dimension higher than four in the fields which, therefore, have couplings that
are inversely proportional to the scale of new physics ⇤NP.

The lowest dimension non-renormalizable terms are dimension-five:

� Ldim�5
Seesaw =

Z
⌫

ij

⇤NP
LLiLLj��+ h.c. . (119)

These are the seesaw terms, leading to neutrino masses.
Exercise 5: How does the global symmetry breaking pattern (47) change when (119) is taken into

account?

Exercise 6: What is the number of physical lepton flavor parameters in this case? Identify these

parameters in the mass basis.

As concerns quark flavor physics, consider, for example, the following dimension-six set of oper-
ators:

Ldim�6
�F=2 =

X

i 6=j

zij

⇤2
(QLi�µQLj)

2
, (120)

where the zij are dimensionless couplings. These terms contribute to the mass splittings between the
corresponding two neutral mesons. For example, the term L�B=2 / (dL�µbL)2 contributes to �mB ,
the mass difference between the two neutral B-mesons. We use

M
NP
BB̄

=
1

6

zdb

⇤2
mBf

2
BBB . (121)
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Table 6: Lower bounds on the scale of new physics ⇤, in units of TeV, for |zij | = 1, and upper bounds on zij ,
assuming ⇤ = 1 TeV.

Operator ⇤ [TeV] CPC ⇤ [TeV] CPV |zij | Im(zij) Observables
(s̄L�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK ; ✏K

(s̄RdL)(s̄LdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK ; ✏K
(c̄L�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD; A�

(c̄RuL)(c̄LuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD; A�

(b̄L�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mB; S K
(b̄RdL)(b̄LdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mB; S K
(b̄L�µsL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs

; S �
(b̄RsL)(b̄LsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs

; S �

Analogous expressions hold for the other neutral mesons. Taking into account the bounds of Eq. (118),
we obtain

|zdb|
⇤2

<
2.3⇥ 10�6

TeV2 ,
Im(zdb)

⇤2
<

1.1⇥ 10�6

TeV2 . (122)

A more detailed list of the bounds derived from the �F = 2 observables in Table 5 is given in
Table 6. The bounds refer to two representative sets of dimension-six operators: (i) left-left operators,
that are also present in the SM, and (ii) operators with different chirality, where the bounds are strongest
because of larger hadronic matrix elements.

The first lesson that we draw from these bounds on ⇤ is that new physics can contribute to FCNC at
a level comparable to the SM contributions even if it takes place at a scale that is six orders of magnitude
above the electroweak scale. A second lesson is that if the new physics has a generic flavor structure,
that is zij = O(1), then its scale must be above 104 � 105 TeV (or, if the leading contributions involve
electroweak loops, above 103� 104 TeV). If indeed ⇤ � TeV , it means that we have misinterpreted the

hints from the fine-tuning problem and the dark matter puzzle.

A different lesson can be drawn from the bounds on zij . It could be that the scale of new physics

is of order TeV, but its flavor structure is far from generic. Specifically, if new particles at the TeV scale
couple to the SM fermions, then there are two ways in which their contributions to FCNC processes,
such as neutral meson mixing, can be suppressed: degeneracy and alignment. Either of these principles,
or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-
nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons). Thus,
the scale is ⇤SM ⇠ mW . Since the leading contributions to neutral meson mixings come from box dia-
grams, the zij coefficients are suppressed by ↵

2
2. To identify the relevant flavor suppression factor, one

can employ the spurion formalism. For example, the flavor transition that is relevant to B
0 �B

0 mixing
involves dLbL which transforms as (8, 1, 1)SU(3)3q

. The leading contribution must then be proportional to
(Y u

Y
u†)13 / y

2
t VtbV

⇤
td

. Indeed, an explicit calculation (using VIA for the matrix element and neglecting
QCD corrections) gives5

2M
BB̄

mB

⇡ �↵
2
2

12

f
2
B

m
2
W

S0(xt)(VtbV
⇤
td
)2 , (123)

where xi = m
2
i
/m

2
W

and

S0(x) =
x

(1� x)2


1� 11x

4
+

x
2

4
� 3x2 lnx

2(1� x)

�
. (124)

5A detailed derivation can be found in Appendix B of [16].
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Table 6: Lower bounds on the scale of new physics ⇤, in units of TeV, for |zij | = 1, and upper bounds on zij ,
assuming ⇤ = 1 TeV.
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Analogous expressions hold for the other neutral mesons. Taking into account the bounds of Eq. (118),
we obtain
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A more detailed list of the bounds derived from the �F = 2 observables in Table 5 is given in
Table 6. The bounds refer to two representative sets of dimension-six operators: (i) left-left operators,
that are also present in the SM, and (ii) operators with different chirality, where the bounds are strongest
because of larger hadronic matrix elements.

The first lesson that we draw from these bounds on ⇤ is that new physics can contribute to FCNC at
a level comparable to the SM contributions even if it takes place at a scale that is six orders of magnitude
above the electroweak scale. A second lesson is that if the new physics has a generic flavor structure,
that is zij = O(1), then its scale must be above 104 � 105 TeV (or, if the leading contributions involve
electroweak loops, above 103� 104 TeV). If indeed ⇤ � TeV , it means that we have misinterpreted the

hints from the fine-tuning problem and the dark matter puzzle.

A different lesson can be drawn from the bounds on zij . It could be that the scale of new physics

is of order TeV, but its flavor structure is far from generic. Specifically, if new particles at the TeV scale
couple to the SM fermions, then there are two ways in which their contributions to FCNC processes,
such as neutral meson mixing, can be suppressed: degeneracy and alignment. Either of these principles,
or a combination of both, signifies non-generic structure.

One can use the language of effective operators also for the SM, integrating out all particles sig-
nificantly heavier than the neutral mesons (that is, the top, the Higgs and the weak gauge bosons). Thus,
the scale is ⇤SM ⇠ mW . Since the leading contributions to neutral meson mixings come from box dia-
grams, the zij coefficients are suppressed by ↵
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� 3x2 lnx

2(1� x)

�
. (124)

5A detailed derivation can be found in Appendix B of [16].
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Im(�d) = �0.11+0.11
�0.05 . (117)

This can be translated into the following approximate (one sigma) upper bounds:

|MNP
BB̄

/M
SM
BB̄

| ⇠< 0.2 ,

Im(MNP
BB̄

/M
SM
BB̄

) ⇠< 0.1 . (118)

We can make the following two statements:

1. A new physics contribution to B
0 �B

0
mixing amplitude that carries a phase that is signifi-

cantly different from the KM phase is constrained to lie below the 10% level.

2. A new physics contribution to the B
0 � B

0
mixing amplitude which is aligned with the KM

phase is constrained to lie below the 20% level.

Analogous upper bounds can be obtained for new physics contributions to the K0�K
0, B0

s �B
0
s ,

and D
0 �D

0 mixing amplitudes.

7 The new physics flavor puzzle

7.1 A model independent discussion

It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above mPlanck ⇠ 1019

GeV;
2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above

mseesaw ⇠ 1015 GeV;
3. The fine-tuning problem of the Higgs mass and the puzzle of the dark matter suggest that the scale

where the SM is replaced with a more fundamental theory is actually much lower, mtop�partners,
mwimp ⇠< a few TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must be added to
LSM. These are terms of dimension higher than four in the fields which, therefore, have couplings that
are inversely proportional to the scale of new physics ⇤NP.

The lowest dimension non-renormalizable terms are dimension-five:

� Ldim�5
Seesaw =

Z
⌫

ij

⇤NP
LLiLLj��+ h.c. . (119)

These are the seesaw terms, leading to neutrino masses.
Exercise 5: How does the global symmetry breaking pattern (47) change when (119) is taken into

account?

Exercise 6: What is the number of physical lepton flavor parameters in this case? Identify these

parameters in the mass basis.

As concerns quark flavor physics, consider, for example, the following dimension-six set of oper-
ators:

Ldim�6
�F=2 =

X

i 6=j

zij

⇤2
(QLi�µQLj)

2
, (120)

where the zij are dimensionless couplings. These terms contribute to the mass splittings between the
corresponding two neutral mesons. For example, the term L�B=2 / (dL�µbL)2 contributes to �mB ,
the mass difference between the two neutral B-mesons. We use

M
NP
BB̄

=
1

6

zdb

⇤2
mBf

2
BBB . (121)
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.
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dim[𝒪] = 6

ΔF = 2 cLFV EDMsMinimal Flavour Violation
D’Ambrosio, Giudice, Isidori, Strumia; hep-ph/0207036 

Flavour Anarchy

Physics Briefing Book, 
1910.11775

• SMEFT at  - new sources of flavour violation
• Strong constraints from flavour experiments

dim[𝒪] = 6

The importance of flavour violation!
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.
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MFV

Example: MSSM

gauged we expect this boson to be ‘eaten’ by the massless gauge boson, leading to a massive
gauge boson. Interestingly, when SUSY is spontaneously broken we have a massless fermion,
the goldstino, however in a SUGRA theory this goldstino is ‘eaten’ by the gravitino, leading
to a massive gravitino.

The MSSM

Now we are equipped to construct a supersymmetric theory of the known particles and
interactions. We will consider first the minimal model, a.k.a. the ‘Minimal Supersymmetric
Standard Model’ (MSSM). In a supersymmetric version of the SM we will have to introduce
superpartners for all of the known fields of the standard model. It is conventional notation
to denote a superpartner of a SM field with a tilde, i.e. a ẽL is the superpartner of the left-
handed electron. The fermions of the standard model are contained in chiral superfields, and
thus we introduce ‘squarks’ in addition to the quarks, and ‘sleptons’ in addition to leptons.
Scalar partners of SM fermions are individually named with an ‘s’ in front of the name of
their fermion partner, i.e. sneutrino, selectron, sbottom, etc. The gauge fields will have to
live in a vector superfield and will thus have fermionic superpartners. The partners of the
gauge fields are termed ‘gauginos’ and, in specific cases, are di↵erentiated from their bosonic
partners by the su�x ‘ino’. Thus along with gluons we now have gluinos, with W-bosons
winos, and with the hypercharge boson the bino. After electroweak symmetry breaking we
have charginos and two neutralinos from the electroweak gauge sector.

The simple extension of the SM to a SUSY theory enters di�culties when we consider
the SM Higgs boson. Because the Higgs is a scalar, in a SUSY theory it will have a fermionic
partner, the higgsino. This higgsino will have SM gauge charges and is a new fermion
contributing to anomalies in the previously anomaly-free SM. Thus in order to cancel this
new contribution we must add an additional chiral superfield with the opposite gauge charges
of the Higgs. Hence a supersymmetric theory has two Higgs doublets, as opposed to one in
the SM, and these doublets are ‘vector-like’, as they have equal and opposite gauge charges.
It is often stated that, as the superpotential is holomorphic and terms such as H†

U
QD

c are
not allowed, then an extra Higgs doublet must be introduced in order to give down-type
fermions mass. However this is not strictly true, as we know that SUSY must be broken,
and once SUSY is broken such arguments do not apply, whereas an gauge symmetry in QFT
must be anomaly-free, regardless of SUSY.

The superfields of the MSSM are summarised in table 1. The kinetic terms and gauge
interactions for all fields are as in eq.(3.71), and the superpotential for the MSSM is

WMSSM = µHuHd + �uHuQU
c + �dHdQD

c + �eHdLE
c (3.75)

where the � are 3 ⇥ 3 Yukawa couplings and summation over flavour indices is implied.
Additional gauge-invariant, renormalizable, terms which violate baryon or lepton number
are also allowed. These are LLE

c, U c
D

c
D

c, LQD
c and µLLHu. These terms can lead

to rapid proton decay, amongst other forbidden processes, and thus should be suppressed.
To do this we impose an additional global symmetry by hand. This symmetry is a discrete
Z2 symmetry which is a subgroup of R-symmetry, known as R-parity. The R-parity charges
of the MSSM superfields are shown in table 1, and the Grassmann parameter ✓ is also odd
under this parity, hence the name ‘R’-parity. As ✓ is charged under this parity superpartners

29

•Renormalisable terms!
• Impose a discrete  symmetry.Z2

•Soft breaking terms - new flavour spurions!
•Needs constructions such as MFV

1-loop order due to PM . Assuming a generic flavor-violating squark mass matrix em2
q,u,d

⇠ em2,
the Wilson coe�cient is generated at 1-loop by virtual squarks and gluinos:

LSMEFT �
g4s

16⇡2 em2
(ds)(ds) (293)

SM fit requires g4s/(16⇡
2 em2) . 1/(105 TeV)2 and translates into em & 103/2 TeV. Other

important bounds arise from b ! s transitions, µ ! e�.
It is clear that flavor-violation cannot be arbitrary if SUSY has to live at the TeV scale.

In gauge mediation it is natural to have minimal flavor violation (MFV). This means that
all sources of flavor violation comes from the SM Yukawas, i.e. yu,d,e are the only spurions
charged under the non-abelian part of the flavor symmetry. In that case the flavor-violating
soft parameters must be

em2 = a1 + byy† +O(y4) (294)

A = A0y +O(y3). (295)

Then flavor bounds are OK with soft masses at the TeV.

CP-violation In general CP-violation is also a problem for BSM. In particular, the MSSM
has many CP-odd phases in (259). Let us consider the most optimistic situation. We assume
the mediation is flavor-blind (gauge-mediation). This way the EFT respects automatically
MFV. The sfermion masses must be as in (294), where by hermiticity a, b are real. Hence they
have no new phases. Neglecting higher order y-corrections in the A-terms we have a flavor
invariant complex parameter A0 for each representation. In addition we have new phases in
Mi, bµ. How many of these are physical? To answer this question we look at the two relevant
spurionic global symmetries. The charges of the SUSY-breaking terms can be read directly
from (259) (or (257)). We find

Mi µ bµ [A0]i
U(1)PQ 0 �2 �2 0
U(1)R �2 2 0 �2

To understand the charges of A0 observe that Au,d,e = A0yu,d,e has charges (0, 0) 2

U(1)PQ⇥U(1)R whereas yu,d,e ⇠ (0, 2). Under our simplifying MFV assumption the physical
phases are encoded in

M⇤
i Mj , Mi[A

⇤
0]j , µb⇤µMi, µb⇤µ[A0]i. (296)

One can actually imagine scenarios in which A0,M are flavor-universal. In that case we are
left with only three phases, Arg[µb⇤µM ], Arg[MA⇤

0], Arg[µb⇤µA0].
To constrain these we consider the electron EDM de, which provides one of the strongest

constraints on CP-violation in BSM. At 1-loop we have a diagram with Bino and sleptons of
order

LSMEFT �
g02

16⇡2
Arg[M1A

⇤
0] F

✓
|M1|

2

em2
`

,
|M1|

2

em2
e

◆
[ye]ij`i�µ⌫HejgFµ⌫

em2
`

(297)

=) de = e
g02

16⇡2

me

em2
`

Arg[M1A
⇤
0] F

✓
|M1|

2

em2
`

,
|M1|

2

em2
e

◆
.
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•A viable BSM at the TeV-scale should have accidental 
symmetries similar to the SM.

•Key ingredients:  
Flavour symmetry and symmetry breaking patterns.

 Naturalnessℒ2 :
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.

MFV

D’Ambrosio et al; hep-ph/0207036 • No new sources of flavour (and CP) breaking

(q̄q)(ūu)

O(�) : (q̄aq3)(�u)
a
b(ū3u

b) , H.c. , O(�Vq) : (q̄aV
†
q q)(�u)

a
b(ū3u

b) , H.c. .
(2.54)

(q̄q)(d̄d)

O(⇤d⌃d) : (q̄aq3)(⌃d)
a

j(d̄⇤dd
j) , H.c. . (2.55)

(q̄u)(q̄d)

O(⌃d) : (q̄au3)(⌃d)
a

j(q̄3d
j) , O(Vq⌃d) : (q̄au3)(⌃d)

a

j(q̄Vqd
j) ,

O(�⇤d) : (q̄3u
a)(�u)

b
a(q̄b⇤

†
d
d) .

(2.56)

2.4 MFVQ symmetry

Minimal flavor violation assumes that the only spurions of the GQ = U(3)q ⇥U(3)u ⇥U(3)d
symmetry in the quark sector are the SM Yukawa couplings. The quarks transform as

q ⇠ (3,1,1), u ⇠ (1,3,1), d ⇠ (1,1,3) (2.57)

under GQ. As the Yukawa couplings are the sources of the symmetry breaking, they are
promoted into spurions with the transformations assigned as

Yu ⇠ (3, 3̄,1), Yd ⇠ (3,1, 3̄). (2.58)

Fixing the parameters of the SM, i.e., the values of the Yu,d,e spurions, breaks GQ.
With no degenerate or vanishing eigenvalues nor any accidental alignment of Yu and Yd, Yu
can be parametrized exclusively with the diagonal matrix of its singular values, Ŷu:

Yu �! Ŷu : U(3)q ⇥U(3)u �! U(1)3q+u. (2.59)

The remaining quark sector symmetry can then be used to partially diagonalize Yd, writing

Yd �! V Ŷd : U(1)3q+u ⇥U(3)d �! U(1)B. (2.60)

Here V is a special unitary matrix with 3 rotation angles but only 1 phase, as the others
have been successfully factored out: V is nothing but the illustrious CKM matrix. Only the
vectorial baryon number symmetry U(1)B remains unbroken after the inclusion of the quark
Yukawa couplings. Only 9 real parameters and 1 phase are physical; a total of 26 unphysical
parameters have been removed. The remnant flavor symmetry of the quark sector is U(1)B ,
which is consistent with 26 broken generators. No additional phases can be removed from
the baryon number–conserving SMEFT operators with the remnant symmetry.

The spurion counting of the pure quark operators is presented in Table 6, while the
decompositions of the bilinear and quartic structures are listed in Eqs. (2.61–2.66) and
Eqs. (2.67–2.72).
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symmetry in the quark sector are the SM Yukawa couplings. The quarks transform as

q ⇠ (3,1,1), u ⇠ (1,3,1), d ⇠ (1,1,3) (2.57)

under GQ. As the Yukawa couplings are the sources of the symmetry breaking, they are
promoted into spurions with the transformations assigned as

Yu ⇠ (3, 3̄,1), Yd ⇠ (3,1, 3̄). (2.58)

Fixing the parameters of the SM, i.e., the values of the Yu,d,e spurions, breaks GQ.
With no degenerate or vanishing eigenvalues nor any accidental alignment of Yu and Yd, Yu
can be parametrized exclusively with the diagonal matrix of its singular values, Ŷu:

Yu �! Ŷu : U(3)q ⇥U(3)u �! U(1)3q+u. (2.59)

The remaining quark sector symmetry can then be used to partially diagonalize Yd, writing

Yd �! V Ŷd : U(1)3q+u ⇥U(3)d �! U(1)B. (2.60)

Here V is a special unitary matrix with 3 rotation angles but only 1 phase, as the others
have been successfully factored out: V is nothing but the illustrious CKM matrix. Only the
vectorial baryon number symmetry U(1)B remains unbroken after the inclusion of the quark
Yukawa couplings. Only 9 real parameters and 1 phase are physical; a total of 26 unphysical
parameters have been removed. The remnant flavor symmetry of the quark sector is U(1)B ,
which is consistent with 26 broken generators. No additional phases can be removed from
the baryon number–conserving SMEFT operators with the remnant symmetry.

The spurion counting of the pure quark operators is presented in Table 6, while the
decompositions of the bilinear and quartic structures are listed in Eqs. (2.61–2.66) and
Eqs. (2.67–2.72).
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• The MFV brings the cutoff to the TeV scale!
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Table 7: The MFV values and the experimental bounds on the coefficients of �F = 1 operators

Operator zij / CKM+GIM |zij | < (⇤/TeV)2⇥
(s̄L�µdL)2 y

4
t (VtsV

⇤
td
)2 10�7 9.0⇥ 10�7

(s̄RdL)(s̄LdR) y
4
t ysyd(VtsV

⇤
td
)2 10�14 6.9⇥ 10�9

(c̄L�µuL)2 y
4
b
(VcbV

⇤
ub
)2 10�14 5.6⇥ 10�7

(c̄RuL)(c̄LuR) y
4
b
ycyu(VcbV

⇤
ub
)2 10�20 5.7⇥ 10�8

(b̄L�µdL)2 y
4
t (VtbV

⇤
td
)2 10�4 2.3⇥ 10�6

(b̄RdL)(b̄LdR) y
4
t ybyd(VtbV

⇤
td
)2 10�9 3.9⇥ 10�7

(b̄L�µsL)2 y
4
t (VtbV

⇤
ts)

2 10�3 5.0⇥ 10�5

(b̄RsL)(b̄LsR) y
4
t ybys(VtbV

⇤
ts)

2 10�6 8.8⇥ 10�6

The idea of minimal flavor violation is relevant to extensions of the SM, and can be applied in two
ways:

1. If we consider the SM as a low energy effective theory, then all higher-dimension operators, con-
structed from SM-fields and Y -spurions, are formally invariant under Gglobal.

2. If we consider a full high-energy theory that extends the SM, then all operators, constructed from
SM and the new fields, and from Y -spurions, are formally invariant under Gglobal.

That MFV allows new physics at the TeV scale is demonstrated in Table 7.
Exercise 10: Use the spurion formalism to argue that, in MFV models, the KL ! ⇡

0
⌫⌫̄ decay

amplitude is proportional to y
2
t VtdV

⇤
ts.

Examples of MFV models include models of supersymmetry with gauge-mediation or with anomaly-
mediation of its breaking.

8 The Standard Model flavor puzzle

The SM has thirteen flavor parameters: six quark Yukawa couplings, four CKM parameters (three angles
and a phase), and three charged lepton Yukawa couplings. (One can use fermions masses instead of the
fermion Yukawa couplings, yf =

p
2mf/v.) The orders of magnitudes of these thirteen dimensionless

parameters are as follows:

yt ⇠ 1, yc ⇠ 10�2
, yu ⇠ 10�5

,

yb ⇠ 10�2
, ys ⇠ 10�3

, yd ⇠ 10�4
,

y⌧ ⇠ 10�2
, yµ ⇠ 10�3

, ye ⇠ 10�6
,

|Vus| ⇠ 0.2, |Vcb| ⇠ 0.04, |Vub| ⇠ 0.004, �KM ⇠ 1 . (129)

Only two of these parameters are clearly of O(1), the top-Yukawa and the KM phase. The other flavor
parameters exhibit smallness and hierarchy. Their values span six orders of magnitude. It may be that
this set of numerical values are just accidental. More likely, the smallness and the hierarchy have a
reason. The question of why there is smallness and hierarchy in the SM flavor parameters constitutes
“The Standard Model flavor puzzle.”

The motivation to think that there is indeed a structure in the flavor parameters is strengthened by
considering the values of the four SM parameters that are not flavor parameters, namely the three gauge
couplings and the Higgs self-coupling:

gs ⇠ 1 , g ⇠ 0.6 , e ⇠ 0.3 , � ⇠ 0.12 . (130)
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U(2)3

Barbieri et at; 1105.2296

V† ∝ (Vtd, Vts)Δ ≪ V ≪ 1

• Approximate symmetry of the SM
• Small spurions  consistent power counting
• Also protection against FCNC

⟹

similar manner, thus operators can always be dressed with higher powers of Y †
uYu. However,

not all of these are independent. In fact three of these are enough to span the space, and
higher powers can be absorbed into the coe�cients of the operators with lower powers: a
finite set is su�cient to capture all physics. A proper organizing principle exists when the
spurions are small (e.g., if Yu always comes with a small parameter ✏u ⌧ 1), and the MFV
operators can be organized by powers of the spurions. This naive expansion in powers of
Yu,d is not necessarily possible, since yt ⇠ 1, and in 2HDM type models even yb can be
order 1. The authors of Ref. [121] were able to show that non-linearly realized MFV, where
a power expansion is impossible, can be e↵ectively captured as a special case of the later,
much acclaimed U(2)3 flavor symmetry [120].

Here we consider a spectrum of viable flavor symmetries:

i) G = U(2)3 decouples the third generation quarks entirely, yet it gives a decent
protection against FCNCs.

ii) G = U(2)3 ⇥U(1)b decouples only the third generation of down-quarks and keeps yb,
a spurion of U(1)b, perturbatively small.

iii) G = U(2)2 ⇥U(3) for when there is no suppression of yt ' 1 in the SMEFT operators.
The enhanced symmetry allows for a spurion expansion of all but the top quark.

iv) G = U(3)3 linearly realized MFV, provides strong constraints on NP, and e↵ectively
protects against NP contributions to rare SM processes.

In this section, we explore these 4 di↵erent flavor structures for the quark sector. In
each case, we will assume that a perturbative expansion in spurion insertions is possible.
For each symmetry, we provide a parametrization of the spurions, list all flavor contractions
that can occur up to dimension 6 in the SMEFT, and finally provide a counting of the
quark operators at dimension 6.

2.1 U(2)3 symmetry

We assume that the NP posses a symmetry G = U(2)q ⇥U(2)u ⇥U(2)d ⇢ GQ, under which
the SM quarks decompose as

q =

"
q
a
⇠ (2,1,1)

q3 ⇠ (1,1,1)

#
, u =

"
u
a
⇠ (1,2,1)

u3 ⇠ (1,1,1)

#
, d =

"
d
a
⇠ (1,1,2)

d3 ⇠ (1,1,1)

#
. (2.2)

The minimal set of spurions needed to reproduce the SM masses and CKM matrix is

Vq ⇠ (2,1,1) , �u ⇠ (2,2,1) , �d ⇠ (2,1,2) . (2.3)

These spurions generally allow for a slew of Yukawa operators, which contributes to the
Yukawa coupling matrices as

Yu,d =

"
a
u,d

1 �u,d + a
u,d

2 �u�
†
u�u,d + . . . b

u,d

1 Vq + b
u,d

2 �u�
†
uVq + . . .

c
u,d

1 V
†
q �u,d + . . . d

u,d

1 + d
u,d

2 V
†
q Vq + . . .

#
(2.4)

for O(1) parameters au,dn , . . . d
u,d
n , parametrizing all covariant combinations of the spurions

at each entry in the coupling matrix.
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Adding Flavour to the SMEFT

• Charting the space of BSM by flavour symmetries

• Formulate several competing flavour hypothesis 
for  SMEFT ( )

• Systematic approach:  
(smaller symmetry  more terms)

• 28 different case

• Minimal set of flavor-breaking spurions needed to 
reproduce masses and mixings

• Construct explicit (ready-for-use) operator bases 
order by order in the spurion expansion starting 
from the Warsaw basis

dim 6 ΔB = 0

U(3) ⊃ U(2) ⊃ U(1)
⟹

AG, Thomsen, Palavric; 2203.09561
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https://arxiv.org/abs/2203.09561


and the new structures that appear in case of SU(2)3 symmetry are denoted in blue:

(q̄q)

O(1) : (q̄q) , (q̄3q3) , O(V ) : (q̄Vqq3) , V
a

q "ab(q̄3q
b) , H.c. ,

O
�
V

2
�
: (q̄VqV

†
q q) ,

h
✏bc(q̄VqV

c

q q
b) , H.c.

i
.

(2.12)

(ūu)

O(1) : (ūu) , (ū3u3) ,

O(�V ) : (ū�†
uVqu3) , (ūau3)"

ab(V †
q �u)b , ✏

ad
✏bc[ū

a
V

b

q (�u)
c
du3] , H.c. ,

✏bc[ū3V
b

q (�u)
c
au

a] , H.c. .

(2.13)

(d̄d)

O(1) : (d̄d) , (d̄3d3) ,

O(�V ) : (d̄�†
d
Vqd3) , (d̄ad3)"

ab(V †
q �d)b , ✏

ad
✏bc[d̄

a
V

b

q (�d)
c
dd3] , H.c. ,

✏bc[d̄3V
b

q (�d)
c
ad

a] , H.c. .

(2.14)

(ūd)

O(1) : (ū3d3) ,

O(�V ) : (ū�†
uVqd3) , (ū3V

†
q �dd) , (ūad3)"

ab(V †
q �u)b , (ū3d

a)"ab(Vq�
†
d
)b ,

✏
ad
✏bc[ūaV

b

q (�u)
c
dd3] , ✏

bc
✏ad[ū3(V

⇤
q )b(�

⇤
d
)c

d
d
a] , ✏

bc[ūa(V
⇤
q )b(�

⇤
u)c

a
d3] ,

✏bc[ū3V
b

q (�d)
c
ad

a] .
(2.15)

(q̄u)

O(1) : (q̄3u3) , O(V ) : (q̄Vqu3) , (V ⇤
q )a"

ab(q̄bu3) ,

O(�) : (q̄�uu) , (q̄ e�uu) ,

O(�V ) : (q̄3V
†
q �uu) , (q̄3V

†
q
e�uu) , ✏bc[q̄3V

b

q (�u)
c
au

a] , ✏ac[q̄3V
b

q (�
⇤
u)b

c
u
a] .

(2.16)

(q̄d)

O(1) : (q̄3d3) , O(V ) : (q̄Vqd3) , (V ⇤
q )a"

ab(q̄bd3) ,

O(�) : (q̄�dd) , (q̄ e�dd) ,

O(�V ) : (q̄3V
†
q �dd) , (q̄3V

†
q
e�dd) , ✏bc[q̄3V

b

q (�d)
c
ad

a] , ✏ac[q̄3V
b

q (�
⇤
d
)b

c
d
a] .

(2.17)
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Decomposition of quartic structures

Let us continue with the construction of the quartic structures. In what follows, we
focus on the unique7 structures only. Starting with O(1) structures, we follow the similar
reasoning as in the case of bilinears, obtaining six structures: (q̄aqb)(q̄bqa), (q̄aq3)(q̄3qa),
(ūaub)(ūbua), (ūau3)(ū3ua), (d̄adb)(d̄bda) and (d̄ad3)(d̄3da). In case of SU(2)3 symmetry,
only one additional O(1) structure appears: (q̄au3)"ab(q̄bd3).

At O(V ), the U(2)3 and SU(2)3 unique structures are (q̄aq3)(q̄Vqq
a), (q̄3qa)(q̄a✏bcV c

q q
b)

and (q̄3qa)(q̄Vq✏acq
c), while at O(V 2) there is only one structure of the form (q̄aV

†
q q)(q̄Vqq

a).
With one insertion of � spurion, there are four U(2)3 unique ones: (q̄aV

†
q q)(�u)ab(ū3ub),

(q̄aq3)(�d)ab(d̄3db), (q̄au3)(�d)ab(q̄3db) and (q̄3ua)(�u)ba(q̄bd3).
With the insertion of both �u,d and Vq spurions, we obtain six O(�V ) U(2)3 structures

given by (ūau3)(ū�
†
uVqu

a), (d̄ad3)(d̄�
†
d
Vqd

a), (q̄aV
†
q q)(�u)ab(ū3ub), (q̄aV

†
q q)(�d)ab(d̄3db),

(q̄au3)(�d)ab(q̄Vqd
b) and (q̄Vqu

a)(�u)ba(q̄bd3). There are, however, plenty of new SU(2)3

unique structures that emerge at both O(�) and O(�V ). The complete list is presented
below and the SU(2)3 structures are denoted in blue:

(q̄q)(q̄q)

O(1) : (q̄aq
b)(q̄bq

a) , (q̄aq3)(q̄3q
a) ,

O(V ) : (q̄aq3)(q̄Vqq
a) , (q̄3q

a)(q̄a✏bcV
c

q q
b) , (q̄3q

a)(q̄Vq✏acq
c) , H.c. ,

O
�
V

2
�
: (q̄aV

†
q q)(q̄Vqq

a) .

(2.18)

(ūu)(ūu)

O(1) : (ūau
b)(ūbu

a) , (ūau3)(ū3u
a) ,

O(�V ) : (ūau3)(ū�
†
uVqu

a) , (ūau3)✏
ab
✏de[ūbV

d
q (�u)

e
cu

c] , ✏
be
✏cd(ūau3)[ūbV

c
q (�u)

d
eu

a] , H.c. ,

(ū3u
a)[ūaV

c
q ✏cd(�u)

d
bu

b] , (ū3u
a)[ūa✏bdV

c
q (�

⇤
u)c

d
u
b] , ✏ac(ū3u

a)[ūbV
d
q (�

⇤
u)d

b
u
c] , H.c. .
(2.19)

(d̄d)(d̄d)

O(1) : (d̄ad
b)(d̄bd

a) , (d̄ad3)(d̄3d
a) ,

O(�V ) : (d̄ad3)(d̄�
†
dVqd

a) , (d̄ad3)✏
ab
✏de[d̄bV

d
q (�d)

e
cd

c] , ✏
be
✏cd(d̄ad3)[d̄bV

c
q (�d)

d
ed

a] , H.c. ,

(d̄3d
a)[d̄aV

c
q ✏cd(�d)

d
bd

b] , (d̄3d
a)[d̄a✏bdV

c
q (�

⇤
d)c

d
d
b] , ✏ac(d̄3d

a)[d̄bV
d
q (�

⇤
d)d

b
d
c] , H.c. .

(2.20)

7
Epithets ‘unique’ and ‘non-factorizable’ are used interchangeably when dealing with the quartic structures.

This nomenclature refers simply to the quartic structures that cannot be formed as a product of two factorizing

bilinears fully invariant under the discussed flavor group. Needless to say, the final spurion counting of the

SMEFT operators is performed taking the full set of quartic structures.
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• Examples of bilinear structures

• Examples of quartic structures

*the new structures that appear in case of 
SU(2)3 symmetry are denoted in blue 128

U(2)3Q ⇥ U(1)6L

U(2)3
Q
⇥U(1)6

L
O(1) O(V ) O(V 2) O(�) O(�V ) O(y) O(yV ) O(y�) O(y�V )

(LL)(LL) Q
(1,3)
`q

12 6 6 6

(RR)(RR) Qeu, Qed 12 6 6

(LL)(RR)
Q`u, Q`d 12 6 6

Qqe 6 3 3 3

(LR)(RL) Q`edq 3 3 3 3 3 3 3 3

(LR)(LR) Q
(1,3)
`equ

6 6 6 6 6 6 6 6

Total 42 9 9 9 12 12 9 9 9 9 9 9 9 9

U(2)3Q ⇥ U(1)3L

U(2)3
Q
⇥U(1)3

L
O(1) O(V ) O(V 2) O(�) O(�V )

(LL)(LL) Q
(1,3)
`q

12 6 6 6

(RR)(RR) Qeu, Qed 12 6 6

(LL)(RR)
Q`u, Q`d 12 6 6

Qqe 6 3 3 3

(LR)(RL) Q`edq 3 3 3 3 3 3 3 3

(LR)(LR) Q
(1,3)
`equ

6 6 6 6 6 6 6 6

Total 51 9 18 18 9 9 9 21 21

D Group identities

In SU(2) the following identities hold:

"
ij
"k` = �

i
`�

j
k � �

i
k�

j
` (D.1)

using the convention "12 = �"
12.

In SU(N) the following identities hold:

t
ai
jt

ak
` =

1

2
�
i
`�

k
j �

1

2N
�
i
j�

k
`, (D.2)

f
abc

t
bi
jt

ck
` =

i

2

�
t
ai
`�

k
j � t

ak
j�

i
`

�
, (D.3)

d
abc

t
bi
jt

ck
` =

1

2

�
t
ai
`�

k
j + t

ak
j�

i
`

�
�

1

N

�
t
ai
j�

k
` + t

ak
`�

i
j

�
, (D.4)

where the defining identity for the symmetric tensor is

t
a
t
b =

1

2


1

N
�
ab1+ (dabc + if

abc)tc
�
. (D.5)

In the case of SU(2) there is no 3-index symmetric tensor and Eq. (D.4) implies the identity

t
ai
`�

k
j + t

ak
j�

i
` = t

ai
j�

k
` + t

ak
`�

i
j . (D.6)
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Watch out redundancies

Example:  quarkU(2)3
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U(2)q ⇥U(2)u ⇥U(2)d O(1) O(V ) O(V 2) O(V 3) O(�) O(�V )

 
2
H

3 QuH 1 1 1 1 1 1 1 1

QdH 1 1 1 1 1 1 1 1

 
2
XH

Qu(G,W,B) 3 3 3 3 3 3 3 3

Qd(G,W,B) 3 3 3 3 3 3 3 3

 
2
H

2
D

Q
(1,3)
Hq

4 2 2 2

QHu,QHd 4 2 2

QHud 1 1 2 2

(LL)(LL) Q
(1,3)
qq 10 6 6 10 2 2 2

(RR)(RR)
Quu,Qdd 10 6 6

Q
(1,8)
ud

8 8 8

(LL)(RR) Q
(1,8)
qu ,Q(1,8)

qd
16 8 8 8 4 4 12 12

(LR)(LR) Q
(1,8)
quqd

2 2 4 4 2 2 8 8 12 12

Total 63 11 28 28 22 4 2 2 20 20 50 50

Table 2. Counting of the pure quark SMEFT operators (see Appendix A) assuming U(2)q⇥U(2)u⇥
U(2)d symmetry in the quark sector. The counting is performed taking up to three insertions of
Vq spurion, one insertion of �u,d and one insertion of the �u,dVq spurion product. Left (right)
numerical entry in each column gives the number of CP even (odd) coe�cients at the given order in
spurion counting.

where we adopt the notation su, cu for sine and cosine of the same angle, and

�d �!

"
cd �sde

i↵

sde
�i↵

cd

#"
�d 0

0 �
0
d

#
: U(2)d �! ;. (2.10)

The complete breaking of G ! ; by the spurions makes it possible to remove 12 unphysical
parameters from the spurions, reducing the naive 10 complex parameters down to a total of
5 real positive parameters, 2 mixing angles, and a phase. At dimension 4, together with yb

and yt these give the quark masses and the CKM mixing matrix. Also, given the breaking
pattern at dimension 4, means that all coe�cients of the baryon number–conserving SMEFT
operators are physical.6

The spurion counting of the pure quark SMEFT operators assuming U(2)3 (or SU(2)3)
symmetry in the quark sector is presented in Table 2 (3). The decompositions of the
bilinear structures are presented in Eqs. (2.12–2.17) and of the unique quartic structures in
Eqs. (2.18–2.23).

Decomposition of bilinear structures

In this section, we present the construction of bilinear structures invariant under the U(2)3

flavor symmetry. Let us start with the O(1) structures. Since q, u and d all decompose
as 2q,u,d � 1, respectively, under U(2)3 group, the O(1) bilinears can be formed either

6
Some of these coe�cients are unphysical when using the redundant spurion parametrization of Ref. [1].

With this is mind, the parametrization in Ref. [1] can still be useful in model building.
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Example:  quarkU(2)3
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https://github.com/aethomsen/SMEFTflavor

Tools

• Mathematica package SMEFTflavor to facilitate the use of flavor symmetries 

130
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AG, Thomsen, Palavric; 2203.09561

Summary

• Flavour-symmetric operator bases (no spurion insertions)
• Systematically from MFV towards anarchy: U(3) ⊃ U(2) ⊃ U(1)

Top/Higgs/EW

Flavour
• Nontrivial Interplay 
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AG, Thomsen, Palavric; 2203.09561

Summary

AG, Palavric; wip
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AG, Thomsen, Palavric; 2203.09561

Summary

AG, Palavric; wip

Next slide
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 flavour-symmetric basisU(3)5

• Explicit operator basis: 41 CP even, 6 CP odd
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 flavour-symmetric basisU(3)5

•Green: Can be generated at tree-level 
in a renormalisable UV completion!

Q: What are all tree-level UV completions? AG, Palavric; 2305.08898
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Leading (flavour-blind) directions

• Assume weakly coupled, perturbative UV with new spin-0, 1/2, 1 fields

• New fields have  and leading (renormalisable) interactions

• Goal: identify all possible ways to generate  operator in the 
flavour-symmetric basis

• Start from the UV/IR dictionary of 1711.10391 and impose :

MX ≫ vEW

dim 6 U(3)5

U(3)5

• In most cases, a single flavour irrep integrates to a single Hermitian 
operator with a definite sign (a leading direction)

• These define a UV motivated operator basis suitable for 1D fits

AG, Palavric; 2305.08898

- New fields are irreps of the flavor group: 1, 3, 6, 8

- Parameter reduction: Flavour tensors fixed by group theory
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Example: Fermions

• See scalars, vectors and exceptional cases in AG, Palavric; 2305.08898
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Compilation of EFT 
limits on leading 

directions
AG, Palavric; 2305.08898

• Automatic protection against FCNC

• The case for Top/Higgs/EW fits
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Leading directions:  
Renormalization effects

139
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AG, Palavric, Smolkovic; 2312.09179

• Flavor violation is unavoidable! 

• Even starting with a completely 
flavor-blind NP at the matching 
scale, SMEFT RG generates FV!

“We find that for the leading directions, 
corresponding to a single-mediator 
dominance, RG mixing effects occasionally 
serve as the primary indirect probe.”

https://arxiv.org/abs/2312.09179


Cutoff 2.5



Flavour Model 
Building



•…

Flavour Model Building

• Explain (fully or partially) the peculiar flavour patterns

•Warped compactification •Froggatt-Nielsen

•(Gauged) flavour symmetries
•Multi-scale flavour

•Partial compositeness

142

hep-ph/030625, 0804.1954, 1404.7137, 1506.01961,  
1506.00623, 1607.01659, 1908.09312, 1911.05454, …

1603.06609, 1712.01368, 2011.01946, 2203.01952…

Froggatt:1978nt, hep-ph/9212278, hep-ph/9310320, 
1909.05336, 1907.10063, 2009.05587, 2002.04623, 
2010.03297, …

hep-ph/9512388, hep-ph/9507462, 1009.2049, 1105.2296, 1505.03862, 
1609.05902, 1611.02703, 1807.03285, 1805.07341, 2201.07245, …

hep-ph/9905221, hep-ph/9903417, hep-ph/0003129, hep-ph/
9912408, hep-ph/0408134, 0903.2415, 1004.2037, 1509.02539, 
2203.01952, …

•Clockwork flavour
1610.07962, 1711.05393, 1807.09792, 2106.09869, …

•Radiative masses
Weinberg:1972ws, hep-ph/9601262, 1409.2522, 
2001.06582, 2012.10458, …
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The flavor puzzle

Quark sector:

yu,d ⇠

� �
VCKM ⇠

� �

Lepton sector:

ye ⇠

� �
VPMNS ⇠

� �Not visible in colliders

Is the structure in the flavor sector

meaningful?

How does potential new physics

couple to flavor?

What is (if any) the flavor symmetry

of the SM?

yt is the leading (only non-perturbative) breaking of GF in the SM:

yu ⇠

� �
: GF ! U(2)q ⇥ U(2)u ⇥ U(3)d ⇥ U(3)` ⇥ U(3)e ⇥ U(1)B

Anders Eller Thomsen (U. Bern) EFT Flavor WG1-GLOB 3
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where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write d⌦c.m. = 2⇡ sin ✓c.m. d✓c.m. ,
where ✓c.m. is the scattering angle in the center of mass frame.

• Compute the total cross section for 2 ! 2 scattering in �
4 theory in the center-of-mass

frame at a given center-of-mass energy.

As a final exercise, evaluate the cross section for e+e� ! µ
+
µ
� following from

1

4

X

sA,sB ,r1,r2

|M |2 = 2e4
t
2 + u

2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,�1)
p1 = E(1, sin ✓, 0, cos ✓), p2 = E(1,� sin ✓, 0,� cos ✓)

. (12)

• Show that the di↵erential muon production cross section is

d�

d⌦
=

↵
2
em

4s

�
1 + cos2 ✓

�
, ↵em ⌘ e

2

4⇡
, (13)

and sketch the physical meaning of this result.

• Show that the total cross section reads

� =
4⇡↵2

em

3s
. (14)

�LSM � q̄iY
ij
u ujH̃ + q̄iY

ij
d djH + ¯̀

iY
ij
e ejH (15)

�LSMEFT � 1

⇤⌫
`iY

ij
⌫ `jHH (16)

3
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• Small  — natural a la t’ Hooft.

• Enter the theory in the same way. Why hierarchies???

yf

The flavor puzzle

Quark sector:

yu,d ⇠

� �
VCKM ⇠

� �

Lepton sector:

ye ⇠

� �
VPMNS ⇠

� �Not visible in colliders

Is the structure in the flavor sector

meaningful?

How does potential new physics

couple to flavor?

What is (if any) the flavor symmetry

of the SM?

yt is the leading (only non-perturbative) breaking of GF in the SM:

yu ⇠

� �
: GF ! U(2)q ⇥ U(2)u ⇥ U(3)d ⇥ U(3)` ⇥ U(3)e ⇥ U(1)B
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SVD:

The Flavour Puzzle
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ν1
ν2 ν3

e
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τ
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Mass [GeV]

The neutrino sector is different

where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write d⌦c.m. = 2⇡ sin ✓c.m. d✓c.m. ,
where ✓c.m. is the scattering angle in the center of mass frame.

• Compute the total cross section for 2 ! 2 scattering in �
4 theory in the center-of-mass

frame at a given center-of-mass energy.

As a final exercise, evaluate the cross section for e+e� ! µ
+
µ
� following from

1

4

X

sA,sB ,r1,r2

|M |2 = 2e4
t
2 + u

2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,�1)
p1 = E(1, sin ✓, 0, cos ✓), p2 = E(1,� sin ✓, 0,� cos ✓)

. (12)

• Show that the di↵erential muon production cross section is

d�

d⌦
=

↵
2
em

4s

�
1 + cos2 ✓

�
, ↵em ⌘ e

2

4⇡
, (13)

and sketch the physical meaning of this result.

• Show that the total cross section reads

� =
4⇡↵2

em

3s
. (14)

�LSM � q̄iY
ij
u ujH̃ + q̄iY

ij
d djH + ¯̀

iY
ij
e ejH (15)

�LSMEFT � 1

⇤⌫
`iY

ij
⌫ `jHH (16)

3

The flavor puzzle

Quark sector:

yu,d ⇠

� �
VCKM ⇠

� �

Lepton sector:

ye ⇠

� �
VPMNS ⇠

� �Not visible in colliders

Is the structure in the flavor sector

meaningful?

How does potential new physics

couple to flavor?

What is (if any) the flavor symmetry

of the SM?

yt is the leading (only non-perturbative) breaking of GF in the SM:

yu ⇠

� �
: GF ! U(2)q ⇥ U(2)u ⇥ U(3)d ⇥ U(3)` ⇥ U(3)e ⇥ U(1)B

Anders Eller Thomsen (U. Bern) EFT Flavor WG1-GLOB 3

2) Large/Anarchic mixing! 
1) High-scale  
predicts a mass gap! 

Λν

The success of the SM(EFT)?

0.8 0.6 0.15

0.4 0.6 0.7

0.6 0.70.4

The Flavour Puzzle

Admir Greljo | Lectures on EFT in flavour



? … generate hierarchies in the charged 
sector while keeping neutrinos anarchic

A unifying picture of flavor…

146
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?
A unifying picture of flavor…

147

Barbieri et al; hep-ph/9512388, hep-ph/
9605224, hep-ph/9610449, …

Approximate global U(2)

Antusch, AG, Stefanek, Thomsen; 2311.09288
Our revision:

… generate hierarchies in the charged 
sector while keeping neutrinos anarchic

Admir Greljo | Lectures on EFT in flavour

https://arxiv.org/abs/2311.09288


148

U(2) ≡ SU(2) × U(1) f3
L , f i

R ∼ 10IRREPs [f1
L

f 2
L] ∼ 2+1

 Hierarchies from f̄ i
L Yij f j

R U(2)L
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Step A
Exact symmetry limit

 rot.U(3)R

m3 ≠ 0 , m1,2 = 0

RAccidental

 Hierarchies from f̄ i
L Yij f j

R U(2)L

U(2) ≡ SU(2) × U(1) f3
L , f i

R ∼ 10IRREPs [f1
L

f 2
L] ∼ 2+1
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Step A Step B
Exact symmetry limit

 rot.U(3)R

m3 ≠ 0 , m1,2 = 0

Leading (small) breaking

V2 = (0
a) ∼ 2+1

U(2) → U(1)
1 ≫ a > 0

m3 ≫ m2 > 0 , m1 = 0

RAccidental

f̄LV ∼ 10

 Hierarchies from f̄ i
L Yij f j

R U(2)L

U(2) ≡ SU(2) × U(1) f3
L , f i

R ∼ 10IRREPs [f1
L

f 2
L] ∼ 2+1

Admir Greljo | Lectures on EFT in flavour



f̄LV ∼ 10
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Step A Step C
Exact symmetry limit

 rot.U(3)R

m3 ≠ 0 , m1,2 = 0

Subleading breaking

→ 0

V1 = (b
0) ∼ 2+1

m3 ≫ m2 ≫ m1

1 ≫ a ≫ b > 0
RAccidental

Step B
Leading (small) breaking

V2 = (0
a) ∼ 2+1

U(2) → U(1)
1 ≫ a > 0

m3 ≫ m2 > 0 , m1 = 0

 Hierarchies from f̄ i
L Yij f j

R U(2)L

U(2) ≡ SU(2) × U(1) f3
L , f i

R ∼ 10IRREPs [f1
L

f 2
L] ∼ 2+1
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: Singular value decompositionU(2)L

152

Y ≡ Lf Ŷ Rf
†

Y ∼ [
b b b
a a a
1 1 1]
1 ≫ a ≫ b

Admir Greljo | Lectures on EFT in flavour



: Singular value decompositionU(2)L

153

 rot.R(0)
f ∼ 𝒪(1)

Y ∼ [
b b b
a a a
1 1 1]
1 ≫ a ≫ b

Y(1) ∼ [
b b b
0 a a
0 0 1]

Y ≡ Lf Ŷ Rf
†

Admir Greljo | Lectures on EFT in flavour



: Singular value decompositionU(2)L
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Y ∼ [
b b b
a a a
1 1 1] Y(1) ∼ [

b b b
0 a a
0 0 1]

Perturbative diagonalisation: Y(1) = L(0)
f Ŷ R(1)†

f

Ŷ ∼
b 0 0
0 a 0
0 0 1

L(0)
f ∼ [

1 b/a b
1 a

1]

1 ≫ a ≫ b

Y ≡ Lf Ŷ Rf
†

 rot.R(0)
f ∼ 𝒪(1)
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 ?U(2)R

[f1
R

f 2
R] ∼ 2+1 f3

R , f i
L ∼ 10

Y ∼
b a 1
b a 1
b a 1

 rot.L(0)
f ∼ 𝒪(1)

Y(1) ∼
b 0 0
b a 0
b a 1

Perturbative diagonalisation: Y(1) = L(1)
f Ŷ R(0)†

f

R(0)
f ∼ [

1 b/a b
1 a

1]Ŷ ∼
b 0 0
0 a 0
0 0 1

1 ≫ a ≫ b
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How can this be applied to 
the SM flavor puzzle?
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Quarks

(q1
L

q2
L) ∼ 2+1 all other singletsImpose  :U(2)q

• Both  and  hierarchicalŶu Ŷd

•  hierarchicalVCKM ≈ L(0)†
u L(0)

d

Imposing 

 is 
accidental at dim-4

U(2)q ⟹

U(2)u × U(2)d
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Quarks

Leptons

(e1
R

e2
R) ∼ 2+1 all other singletsImpose  :U(2)e

• Hierarchical  and .Ŷe L(0)
l ∼ 𝒪(1)

• No selection rules on the dim-5 Weinberg operator! 
PMNS  ∼ 𝒪(1)

(q1
L

q2
L) ∼ 2+1 all other singletsImpose  :U(2)q

• Both  and  hierarchicalŶu Ŷd

•  hierarchicalVCKM ≈ L(0)†
u L(0)

d

Imposing 

 is 
accidental at dim-4

U(2)q ⟹

U(2)u × U(2)d

Admir Greljo | Lectures on EFT in flavour



159

A single  to rule them all?U(2)

U(2)q+e

• Nine hierarchies in terms of two small parameters:

 (x 3 for )y3
f ≫ y2

f ≫ y1
f f = u, d, e

1 ≫ |Vus | ≫ |Vcb | ≫ |Vub |
1 ≫ a ≫ b ≫ a2 ⟹

Admir Greljo | Lectures on EFT in flavour
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Phenomenology

• SMEFT as a proxy for short-distance physics:   selection rules.

• A pattern of deviations emerges; distinct from MFV and anarchy.

• Determine the chirality of operators to test it!

U(2) ⟹

Admir Greljo | Lectures on EFT in flavour
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Refining the picture

• What about  ?

•  &  spectrum seems 
compressed compared with .

yb , yτ ∼ 10−2

di ei

ui

10−6

10−4

10−2

1

u

c

d

s

t

b

e

μ
τ
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0.100
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z
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m⌧

z
⇤
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters

z`1 = 0.057 y`2 = 0.20 x`3 = 0.010

zu1 = 0.091 yu2 = 0.76 xu3 = 0.67 (A6)

zd1 = 0.20 yd2 = 0.066 xd3 = 0.010

zd2 = 0.89ei↵ zd3 = 0.72ei(��1.2)
yd3 = 0.13ei(��↵)

with arbitrary phases ↵,�, under the assumption that
Ld = VCKM. All of the couplings are roughly within an

order of magnitude save for the bottom and tau Yukawas.

U(2)q+ec+uc ⇥ Z2 — The down-quark and charged-
lepton Yukawa matrices become

Yd = VZ

0

@
zd1b zd2b zd3b

yd2a yd3a

xd3

1

A , Ye = VZ

0

@
z`1b

z`2b y`2a

z`3b y`3a x`3

1

A ,

(A7)
while for the up-quark

Yu =

0

@
zu1b

2
zu2ab zu3b

yu1ab yu2a
2

yu3a

xu1b xu2a xu3

1

A . (A8)

After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0

zu1 = 1.1 yu2 = 2.5 xu3 = 0.67 (A9)

zd1 = 0.50 yd2 = 0.66 xd3 = 1.0

zd2 = 2.2ei↵ zd3 = 1.8ei(��1.2)
yd3 = 1.3ei(��↵)

where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
matrix is generated. Thus, xp

f
, y

p

f
, z

p

f
of O(1) correctly

predict the observed flavor hierarchies.
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• Double suppression in the 
up-quark spectrum!
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters
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with arbitrary phases ↵,�, under the assumption that
Ld = VCKM. All of the couplings are roughly within an

order of magnitude save for the bottom and tau Yukawas.
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lepton Yukawa matrices become
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After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0

zu1 = 1.1 yu2 = 2.5 xu3 = 0.67 (A9)

zd1 = 0.50 yd2 = 0.66 xd3 = 1.0

zd2 = 2.2ei↵ zd3 = 1.8ei(��1.2)
yd3 = 1.3ei(��↵)

where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
matrix is generated. Thus, xp
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predict the observed flavor hierarchies.
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters
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with arbitrary phases ↵,�, under the assumption that
Ld = VCKM. All of the couplings are roughly within an

order of magnitude save for the bottom and tau Yukawas.
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After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0

zu1 = 1.1 yu2 = 2.5 xu3 = 0.67 (A9)

zd1 = 0.50 yd2 = 0.66 xd3 = 1.0

zd2 = 2.2ei↵ zd3 = 1.8ei(��1.2)
yd3 = 1.3ei(��↵)

where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
matrix is generated. Thus, xp
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of O(1) correctly

predict the observed flavor hierarchies.
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters
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zd2 = 0.89ei↵ zd3 = 0.72ei(��1.2)
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with arbitrary phases ↵,�, under the assumption that
Ld = VCKM. All of the couplings are roughly within an

order of magnitude save for the bottom and tau Yukawas.
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After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0

zu1 = 1.1 yu2 = 2.5 xu3 = 0.67 (A9)

zd1 = 0.50 yd2 = 0.66 xd3 = 1.0

zd2 = 2.2ei↵ zd3 = 1.8ei(��1.2)
yd3 = 1.3ei(��↵)

where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
matrix is generated. Thus, xp
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters
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with arbitrary phases ↵,�, under the assumption that
Ld = VCKM. All of the couplings are roughly within an

order of magnitude save for the bottom and tau Yukawas.
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After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0

zu1 = 1.1 yu2 = 2.5 xu3 = 0.67 (A9)
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where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters
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with arbitrary phases ↵,�, under the assumption that
Ld = VCKM. All of the couplings are roughly within an

order of magnitude save for the bottom and tau Yukawas.

U(2)q+ec+uc ⇥ Z2 — The down-quark and charged-
lepton Yukawa matrices become
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After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0

zu1 = 1.1 yu2 = 2.5 xu3 = 0.67 (A9)

zd1 = 0.50 yd2 = 0.66 xd3 = 1.0

zd2 = 2.2ei↵ zd3 = 1.8ei(��1.2)
yd3 = 1.3ei(��↵)

where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
matrix is generated. Thus, xp
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, z
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of O(1) correctly

predict the observed flavor hierarchies.
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters
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with arbitrary phases ↵,�, under the assumption that
Ld = VCKM. All of the couplings are roughly within an

order of magnitude save for the bottom and tau Yukawas.
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After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0

zu1 = 1.1 yu2 = 2.5 xu3 = 0.67 (A9)

zd1 = 0.50 yd2 = 0.66 xd3 = 1.0

zd2 = 2.2ei↵ zd3 = 1.8ei(��1.2)
yd3 = 1.3ei(��↵)

where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
matrix is generated. Thus, xp
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters

z`1 = 0.057 y`2 = 0.20 x`3 = 0.010
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zd2 = 0.89ei↵ zd3 = 0.72ei(��1.2)
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with arbitrary phases ↵,�, under the assumption that
Ld = VCKM. All of the couplings are roughly within an

order of magnitude save for the bottom and tau Yukawas.
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lepton Yukawa matrices become
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After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0

zu1 = 1.1 yu2 = 2.5 xu3 = 0.67 (A9)

zd1 = 0.50 yd2 = 0.66 xd3 = 1.0

zd2 = 2.2ei↵ zd3 = 1.8ei(��1.2)
yd3 = 1.3ei(��↵)

where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
matrix is generated. Thus, xp
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of O(1) correctly

predict the observed flavor hierarchies.
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters
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zu1 = 0.091 yu2 = 0.76 xu3 = 0.67 (A6)
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with arbitrary phases ↵,�, under the assumption that
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After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0
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where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
matrix is generated. Thus, xp
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where we have included the leading contribution in each
entry. The masses of the SM fermions are the running
masses at the matching scale to the SM.

As a realistic benchmark point for the U(2)q+e symme-
try, we consider a SMEFT matching scale of µ = 1PeV.
At this scale, we take (1) to reproduce the SM parame-
ters [57] run up to the matching scale [58]. We take the
spurions (a, b) = (3 · 10�3, 5 · 10�5), which allows us to
determine the parameters

z`1 = 0.057 y`2 = 0.20 x`3 = 0.010

zu1 = 0.091 yu2 = 0.76 xu3 = 0.67 (A6)

zd1 = 0.20 yd2 = 0.066 xd3 = 0.010

zd2 = 0.89ei↵ zd3 = 0.72ei(��1.2)
yd3 = 0.13ei(��↵)

with arbitrary phases ↵,�, under the assumption that
Ld = VCKM. All of the couplings are roughly within an

order of magnitude save for the bottom and tau Yukawas.

U(2)q+ec+uc ⇥ Z2 — The down-quark and charged-
lepton Yukawa matrices become

Yd = VZ

0

@
zd1b zd2b zd3b

yd2a yd3a

xd3
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A , Ye = VZ
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(A7)
while for the up-quark

Yu =

0
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zu1b

2
zu2ab zu3b

yu1ab yu2a
2

yu3a

xu1b xu2a xu3

1

A . (A8)

After perturbative diagonalisation, and setting the spu-
rions (VZ , a, b) = (0.01, 0.03, 0.002), we fit the flavor pa-
rameters with

z`1 = 0.14 y`2 = 2.0 x`3 = 1.0

zu1 = 1.1 yu2 = 2.5 xu3 = 0.67 (A9)

zd1 = 0.50 yd2 = 0.66 xd3 = 1.0

zd2 = 2.2ei↵ zd3 = 1.8ei(��1.2)
yd3 = 1.3ei(��↵)

where, for simplicity, we assumed the o↵-diagonal terms
in Yu to be small. When those are of O(1), a compara-
ble contribution to the up-quark masses and the CKM
matrix is generated. Thus, xp

f
, y

p

f
, z

p

f
of O(1) correctly

predict the observed flavor hierarchies.
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Revisiting SUSY GUT predictions, [wip]

Q: Why do  feel  flavor but  don’t?q, u, e U(2) l, d

A:  GUT…SU(5)
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The UV origin of U(2)

•Gauge the  part!SU(2)

SU(2)q+l
anomaly-free

Antusch, AG, Stefanek, 
Thomsen; 2311.09288

SU(2)q+e SU(2)q+ec+uc

anomaly-freeanomalons
AG, Thomsen; 
2309.11547 wip

*Neutrinos need an 
elaborate structure
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 gaugedSM × SU(2)q+l

AG, Thomsen; 2309.11547 

• The SM-singlet scalar  ~  of flavor:Φ 2

*2nd family *1st family

˜
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AG, Thomsen; 2309.11547 

Gauged flavor

a =
vΦ

mF
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AG, Thomsen; 2309.11547 

Gauged flavor

yp

p

• A single VLQ   is Rank 2 ⟹ Y

• Accidental :  
Massless 1st family!

U(1)

Y ∝
yp

yp

1p

Φ̃
Φ

dp

PS unification mQ = mL
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AG, Thomsen; 2309.11547 

Gauged flavor

• Instead of new UV states, 
introduce IR states.

• The obtained Yukawas are 
mainly insensitive to their 
masses! ~ log mF/mS
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AG, Thomsen; 2309.11547 

Gauged flavor

• Instead of new UV states, 
introduce IR states.

b ∼ a/16π2

d

s

b

e

μ
τ a

1
16π2

a = vΦ/mF

A single parameter!

• The obtained Yukawas are 
mainly insensitive to their 
masses! ~ log mF/mS
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Figure 3. Histogram showing the probability of obtaining the correct order of magnitude for the SM
flavor parameters when the UV parameters take on random numbers drawn from a flat distribution
with the magnitude  1. The black lines display the running SM values at the renormalization
scale 1PeV. See Section 4.2 for details.

4.2 Numerical scan

We randomly generate one million parameter points from a flat distribution, applying the

following constraints on the dimensionless couplings in the UV Lagrangian: �1  Y�  1,��x3
d

��  10�2, and all other contributing Yukawa and scalar couplings are allowed to be

complex, with their magnitudes constrained to  1. We take the symmetry breaking

– 11 –

174

PS unification
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Figure 4. Two-dimensional histograms showing the correlation between the masses of the down
quarks and charged leptons for two choices of tan�. The black points mark the SM values at the
chosen renormalization scale. See Section 4.2 for details.

for the neutrinos, where

�⌫ = 3�45 + 3�46 � �47 + 2�48. (4.7)

This alone incorrectly implies that neutrino masses are similar in size to the up-quark

masses, and the PMNS matrix is close to a unit matrix.

An elegant explanation of the smallness of neutrino masses in the context of minimal

quark-lepton unification is provided by the inverse seesaw mechanism [59]. Our model

is minimally expanded by introducing three left-handed gauge-singlet fermions Si (i =

1, 2, 3). As a result, the Lagrangian gets supplemented by the following gauge-invariant

– 13 –
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Parameter 
counting: 
Leptons
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ParametercounlinginteLeptonsecter

When neutrinos are Dirac the counting is
the same as in the quark sector

Dirac

E en v H iaH

ii

Ls TiHYEein Titty in hi

SSB LH vz iii 2,3

if Ei Mieein Ji Mui Yi

Mu complex

pre complex

singular value decomposition

U MVt Mdiag uae diagonalwith realnonnegative entries
artbitrarytunitary

nitary complex

(If there was a 
right-handed 
neutrino)
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From kinetic terms Four unitaryrotations

L Elite e erifer T.io ke Ti 2Vrei aUqe4rV4 HerY4R

t
Ve M Ve Media

g
3 charged leptonmasses

to
UIMuU Haag 3 neutrinomasses
c R

The rotations cancel everywhere else in the SM

unitary Lagrangian except

Lai atra Wa IVI Eth e

3 real

Vpyµg VIVe Vtk 1 unitaryII s imagine

in

ftp.ii.iq it
and the same for neutrinos

These transformations

leave all terms invariant except for Hae Only Lept
number i e Oe OrOr Oveour or is a fullsymmetry Thus five
phases can be

used to remove parameters in thepaws
Finally 3anglesgig 1 phase

(If there was a 
right-handed 
neutrino)

Parameter 
counting: 
Leptons
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From kinetic terms Four unitaryrotations

L Elite e erifer T.io ke Ti 2Vrei aUqe4rV4 HerY4R

t
Ve M Ve Media

g
3 charged leptonmasses

to
UIMuU Haag 3 neutrinomasses
c R

The rotations cancel everywhere else in the SM

unitary Lagrangian except

Lai atra Wa IVI Eth e

3 real

Vpyµg VIVe Vtk 1 unitaryII s imagine

in

ftp.ii.iq it
and the same for neutrinos

These transformations

leave all terms invariant except for Hae Only Lept
number i e Oe OrOr Oveour or is a fullsymmetry Thus five
phases can be

used to remove parameters in thepaws
Finally 3anglesgig 1 phase

(If there was a 
right-handed 
neutrino)

Parameter 
counting: 
Leptons
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Grouptheorgapproach
Lsm without Ye and Yu enjoys

3Lex Uhde XV13h global symmetry

which is broaken to Ulta when Yeand Yu are present

Ye 9kt 9I in general

Yu 9 Rt 9 I

Freedom to change basisby broken
Ul3 L x U131exUNv t U111L

9angles 17 phases

There is a basis with a 3 me

18 9 9 real params 3 MY
3 mixings in PMNS

18 17 A imaginary
parome.aphasesinPMNS.USMtrick

physical parameters

In the unbroaken phase beforeEWSB we can

start in thebasis L f i v e inthemassbasis

IHVE.hre
a HI

t II ftp.qq to upalignment
ar diagonalmatrix downalignment

IvieHer EVtp.tk

(If there was a 
right-handed 
neutrino)

Parameter 
counting: 
Leptons
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Grouptheorgapproach
Lsm without Ye and Yu enjoys

3Lex Uhde XV13h global symmetry

which is broaken to Ulta when Yeand Yu are present

Ye 9kt 9I in general

Yu 9 Rt 9 I

Freedom to change basisby broken
Ul3 L x U131exUNv t U111L

9angles 17 phases

There is a basis with a 3 me

18 9 9 real params 3 MY
3 mixings in PMNS

18 17 A imaginary
parome.aphasesinPMNS.USMtrick

physical parameters

In the unbroaken phase beforeEWSB we can

start in thebasis L f i v e inthemassbasis

IHVE.hre
a HI

t II ftp.qq to upalignment
ar diagonalmatrix downalignment

IvieHer EVtp.tk

(If there was a 
right-handed 
neutrino)

Parameter 
counting: 
Leptons

• Similarly for the quark sector
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(No right-handed 
neutrino)

Parameter 
counting: 
Leptons

Majorana
E l

L H L SUID invariantE g en
p Y'ex tix thx

i ii

L Little teeth et hi

LH L YE iky
T2 charge conjugation

13 Ei Mieein Mini term field.IE
f

Mu complex symmetric MEN

pre complex

Singular value decomposition

U MVt Mdiag uaediagonalwith realnonnegativeentries
artbitrarytunitary

unitary
complex

If MIM U V

MUT UMvt
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(No right-handed 
neutrino)

Parameter 
counting: 
Leptons

Majorana
E l

L H L SUID invariantE g en
p Y'ex tix thx

i ii

L Little teeth et hi

LH L YE iky
T2 charge conjugation

13 Ei Mieein Mini term field.IE
f

Mu complex symmetric MEN

pre complex

Singular value decomposition

U MVt Mdiag uaediagonalwith realnonnegativeentries
artbitrarytunitary

unitary
complex

If MIM U V

MUT UMvt

From kinetic terms three unitaryrotations

LsElif e erider T.is v eiak.eu Vi U k

t
Ve M Ve Media

g
3 charged leptonmasses

UIMuU Haag 3 neutrinomasses

The rotations cancel everywhere else in the SM

unitary Lagrangian except

Lai atra W IVI Eth e

3 real

Vpns UIVe Vtk 1 unitary s imagine

No more phase rotations in the neutrinosector possible
L MFey

Three phases in the charged lepton sector

a
iione

eine

a Used to remove 3 phases in the PMNS
That is we are left with 3angles and BoBphases
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(No right-handed 
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Parameter 
counting: 
Leptons

From kinetic terms three unitaryrotations

LsElif e erider T.is v eiak.eu Vi U k

t
Ve M Ve Media

g
3 charged leptonmasses

UIMuU Haag 3 neutrinomasses

The rotations cancel everywhere else in the SM

unitary Lagrangian except

Lai atra W IVI Eth e

3 real

Vpns UIVe Vtk 1 unitary s imagine

No more phase rotations in the neutrinosector possible
L MFey

Three phases in the charged lepton sector

a
iione

eine

a Used to remove 3 phases in the PMNS
That is we are left with 3angles and BoBphases
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(No right-handed 
neutrino)

Parameter 
counting: 
Leptons

Grouptheoryapproach
Lsm without Ye and Yu enjoys

U131 x Uhde global symmetry

which is broaken to when Yeand Yr are preset

Ye 9 Rt 9I in general

Yu 6Rt 6 I symmetric

Freedom to change basisby broken
131L x U131e
6angles 12phases

There is a basis with a 3 me

15 6 9 real params 3 MY
3 mixings imPMNS

15 12 3 imaginary paromse3phasesir.PH

physical parameters

we can start in a basis L five
an

Ahmad

IH VKen t
LKet Hell a diagonal
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(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)

91

The CKM matrix
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(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13
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i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
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8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)

91

Experimentally:

0.23 0.22 0.2



188

•The Wolfenstein parametrization:

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:
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(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
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This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by
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(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M
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This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by
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⇢ = +0.160± 0.007 ,
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3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
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(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M
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This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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The experimental ranges for the four parameters are given by
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3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.
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•The unitarity triangles
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Fig. 1: Graphical representation of the unitarity constraint VudV
⇤
ub + VcdV

⇤
cb + VtdV

⇤
tb = 0 as a triangle in the

complex plane.

VusV
⇤
ub

+ VcsV
⇤
cb
+ VtsV

⇤
tb
= 0 , (63)

VudV
⇤
ub

+ VcdV
⇤
cb
+ VtdV

⇤
tb
= 0 . (64)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are “the unitarity triangles”, though the
term “unitarity triangle” is usually reserved for the relation (64) only. The unitarity triangle related to
Eq. (64) is depicted in Fig. 1.

The rescaled unitarity triangle is derived from (64) by (a) choosing a phase convention such that
(VcdV

⇤
cb
) is real, and (b) dividing the lengths of all sides by |VcdV

⇤
cb
|. Step (a) aligns one side of the triangle

with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters (⇢, ⌘). The area of the rescaled unitarity
triangle is |⌘|/2.

Depicting the rescaled unitarity triangle in the (⇢, ⌘) plane, the lengths of the two complex sides
are

Ru ⌘
����
VudVub

VcdVcb

���� =
p
⇢2 + ⌘2 , Rt ⌘

����
VtdVtb

VcdVcb

���� =
p

(1� ⇢)2 + ⌘2 . (65)

The three angles of the unitarity triangle are defined as follows [81, 82]:
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�
, � ⌘ arg


�
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�
. (66)

They are physical quantities and can be independently measured by CP asymmetries in B decays. It is
also useful to define the two small angles of the unitarity triangles (63,62):

�s ⌘ arg


�
VtsV

⇤
tb

VcsV
⇤
cb

�
, �K ⌘ arg


�

VcsV
⇤
cd

VusV
⇤
ud

�
. (67)

3.3 The CKM matrix from tree level processes

The absolute values of seven entries, and in addition one phase, of the CKM matrix are extracted from
tree level processes, see Table 4.

These eight measurements already over-constrain the four Wolfenstein parameters, but the CKM
mechanism passes this test successfully. The ranges that are consistent with all tree level measurements
are the following:

� = 0.2245± 0.0005 , A = 0.84± 0.02 , ⇢ = 0.14± 0.04 , ⌘ = 0.37± 0.03 . (68)
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remaining vertex correspond to the Wolfenstein parameters (⇢, ⌘). The area of the rescaled unitarity
triangle is |⌘|/2.

Depicting the rescaled unitarity triangle in the (⇢, ⌘) plane, the lengths of the two complex sides
are

Ru ⌘
����
VudVub

VcdVcb

���� =
p
⇢2 + ⌘2 , Rt ⌘

����
VtdVtb

VcdVcb

���� =
p

(1� ⇢)2 + ⌘2 . (65)

The three angles of the unitarity triangle are defined as follows [81, 82]:

↵ ⌘ arg


�

VtdV
⇤
tb

VudV
⇤
ub

�
, � ⌘ arg


�
VcdV

⇤
cb

VtdV
⇤
tb

�
, � ⌘ arg


�
VudV

⇤
ub

VcdV
⇤
cb

�
. (66)

They are physical quantities and can be independently measured by CP asymmetries in B decays. It is
also useful to define the two small angles of the unitarity triangles (63,62):

�s ⌘ arg


�
VtsV

⇤
tb

VcsV
⇤
cb

�
, �K ⌘ arg


�

VcsV
⇤
cd

VusV
⇤
ud

�
. (67)

3.3 The CKM matrix from tree level processes

The absolute values of seven entries, and in addition one phase, of the CKM matrix are extracted from
tree level processes, see Table 4.

These eight measurements already over-constrain the four Wolfenstein parameters, but the CKM
mechanism passes this test successfully. The ranges that are consistent with all tree level measurements
are the following:

� = 0.2245± 0.0005 , A = 0.84± 0.02 , ⇢ = 0.14± 0.04 , ⌘ = 0.37± 0.03 . (68)

92

Admir Greljo | Lectures on EFT in flavour

The CKM matrix



189

•The Wolfenstein parametrization:

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
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us + VcdV

⇤
cs + VtdV

⇤
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(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:
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(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M
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remains unchanged by such transformations. However, V does change:
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d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]
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•The unitarity triangles

VtdVtb
*

VcdVcb
*

α=ϕ2
β=ϕ1

γ=ϕ3

VudVub
*

Fig. 1: Graphical representation of the unitarity constraint VudV
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ub + VcdV

⇤
cb + VtdV

⇤
tb = 0 as a triangle in the

complex plane.
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= 0 , (63)

VudV
⇤
ub

+ VcdV
⇤
cb
+ VtdV

⇤
tb
= 0 . (64)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are “the unitarity triangles”, though the
term “unitarity triangle” is usually reserved for the relation (64) only. The unitarity triangle related to
Eq. (64) is depicted in Fig. 1.

The rescaled unitarity triangle is derived from (64) by (a) choosing a phase convention such that
(VcdV

⇤
cb
) is real, and (b) dividing the lengths of all sides by |VcdV

⇤
cb
|. Step (a) aligns one side of the triangle

with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters (⇢, ⌘). The area of the rescaled unitarity
triangle is |⌘|/2.

Depicting the rescaled unitarity triangle in the (⇢, ⌘) plane, the lengths of the two complex sides
are
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The three angles of the unitarity triangle are defined as follows [81, 82]:
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They are physical quantities and can be independently measured by CP asymmetries in B decays. It is
also useful to define the two small angles of the unitarity triangles (63,62):
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3.3 The CKM matrix from tree level processes

The absolute values of seven entries, and in addition one phase, of the CKM matrix are extracted from
tree level processes, see Table 4.

These eight measurements already over-constrain the four Wolfenstein parameters, but the CKM
mechanism passes this test successfully. The ranges that are consistent with all tree level measurements
are the following:

� = 0.2245± 0.0005 , A = 0.84± 0.02 , ⇢ = 0.14± 0.04 , ⌘ = 0.37± 0.03 . (68)
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•The Wolfenstein parametrization:

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.
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⇤
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(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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VusV
⇤
ub

+ VcsV
⇤
cb
+ VtsV

⇤
tb
= 0 , (63)

VudV
⇤
ub

+ VcdV
⇤
cb
+ VtdV

⇤
tb
= 0 . (64)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are “the unitarity triangles”, though the
term “unitarity triangle” is usually reserved for the relation (64) only. The unitarity triangle related to
Eq. (64) is depicted in Fig. 1.

The rescaled unitarity triangle is derived from (64) by (a) choosing a phase convention such that
(VcdV

⇤
cb
) is real, and (b) dividing the lengths of all sides by |VcdV

⇤
cb
|. Step (a) aligns one side of the triangle

with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters (⇢, ⌘). The area of the rescaled unitarity
triangle is |⌘|/2.

Depicting the rescaled unitarity triangle in the (⇢, ⌘) plane, the lengths of the two complex sides
are

Ru ⌘
����
VudVub

VcdVcb

���� =
p
⇢2 + ⌘2 , Rt ⌘

����
VtdVtb

VcdVcb

���� =
p

(1� ⇢)2 + ⌘2 . (65)

The three angles of the unitarity triangle are defined as follows [81, 82]:

↵ ⌘ arg


�

VtdV
⇤
tb

VudV
⇤
ub

�
, � ⌘ arg


�
VcdV

⇤
cb

VtdV
⇤
tb

�
, � ⌘ arg


�
VudV

⇤
ub

VcdV
⇤
cb

�
. (66)

They are physical quantities and can be independently measured by CP asymmetries in B decays. It is
also useful to define the two small angles of the unitarity triangles (63,62):

�s ⌘ arg


�
VtsV

⇤
tb

VcsV
⇤
cb

�
, �K ⌘ arg


�

VcsV
⇤
cd

VusV
⇤
ud

�
. (67)

3.3 The CKM matrix from tree level processes

The absolute values of seven entries, and in addition one phase, of the CKM matrix are extracted from
tree level processes, see Table 4.

These eight measurements already over-constrain the four Wolfenstein parameters, but the CKM
mechanism passes this test successfully. The ranges that are consistent with all tree level measurements
are the following:

� = 0.2245± 0.0005 , A = 0.84± 0.02 , ⇢ = 0.14± 0.04 , ⌘ = 0.37± 0.03 . (68)
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Fig. 4: The standard CKM unitarity triangle (from [15]).

thus violated only, if ⌘ 6= 0. This origin of the observed CPV is called the Kobayashi-Maskawa (KM)
mechanism [13]. Furthermore, CPT is conserved in any Lorentz invariant Quantum Field Theory, and
therefore also in the SM. This means that CPV is equivalent to having T violation – the time reversal is
also violated in the SM.

For the existence of CPV in the SM it is crucial that there are at least 3 generations of quarks.
Repeating the counting of physical parameters from Sec. 2.4 we can easily convince ourselves that it
is possible in the case of 2 generations to make CKM real through field redefinitions. Furthermore, if
Yu and Yd are “aligned”, meaning that they are diagonalized with the same left-handed rotation, then
VCKM = 1. This means that in the SM, if there is no flavour violation, there is also no CP violation
(ignoring the flavour universal, but numerically negligible ✓ term).

The above insights can be encoded in a measure of CP violation, the Jarlskog invariant [20]

JY ⌘ Im
�
det

⇥
YdY

†
d
, YuY †

u

⇤�
. (31)

The JY is invariant under flavour transformations, GF , Eq. (10), and is thus basis independent. The CP
is conserved, if JY = 0. We can also write JY as

JY = JCP

Y

i>j

m2

i
� m2

j

v2/2
' O(10�22), (32)

where the invariant measure of CP violation is

JCP = Im
⇥
VusVcbV

⇤
ub

V ⇤
cs

⇤
= c12c23c

2

13s12s23s13 sin �KM ' �6A2⌘ ' O(10�5). (33)

The product of masses is

Y

i>j

m2

i
� m2

j

v2/2
=

(m2
t � m2

c)

v2/2

(m2
t � m2

u)

v2/2

(m2
c � m2

u)

v2/2

(m2

b
� m2

s)

v2/2

(m2

b
� m2

d
)

v2/2

(m2
s � m2

d
)

v2/2
. (34)

It would vanish, if any of the two pairs of masses were equal, in which case CP would have been con-
served.

3 Tests of the CKM structure
3.1 The standard CKM unitarity triangle
All flavour transitions in the SM depend on only 4 fundamental parameters, �, A, ⇢, and ⌘. We can test
the Kobayashi-Maskawa mechanism by making many measurements, over-constraining the system. One
way to visualize a subset of experimental constraints is through the standard CKM unitarity triangle,
which tests one out of nine unitarity equations, VCKMV †

CKM
= 1. The standard CKM unitarity triangle

is obtained from a product of the first and the third column of the CKM matrix

VudV
⇤
ub

+ VcdV
⇤
cb

+ VtdV
⇤
tb

= 0, (35)
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Table 4: FCCC processes and CKM entries

Process CKM
u ! d`

+
⌫ |Vud| = 0.97417± 0.00021

s ! u`
�
⌫̄ |Vus| = 0.2248± 0.0006

c ! d`
+
⌫ or ⌫µ + d ! c+ µ

� |Vcd| = 0.220± 0.005
c ! s`

+
⌫ or cs̄ ! `

+
⌫ |Vcs| = 0.995± 0.016

b ! c`
�
⌫̄ |Vcb| = 0.0405± 0.0015

b ! u`
�
⌫̄ |Vub| = 0.0041± 0.0004

pp ! tX |Vtb| = 1.01± 0.03
b ! scū and b ! suc̄ � = 73± 5o

Table 5: Measurements related to neutral meson mixing

Sector CP-conserving CP-violating
sd �mK/mK = 7.0⇥ 10�15

✏K = 2.3⇥ 10�3

cu �mD/mD = 8.7⇥ 10�15
A�/yCP ⇠< 0.2

bd �mB/mB = 6.3⇥ 10�14
S K = +0.70± 0.02

bs �mBs
/mBs

= 2.1⇥ 10�12
S � = �0.04± 0.06

The � and A parameters are very well determined. The main effort in CKM measurements is thus aimed
at further improving our knowledge of ⇢ and ⌘. The present status of our knowledge is best seen in a plot
of the various constraints and the final allowed region in the ⇢ � ⌘ plane. This is shown in Fig. 3. The
present status of our knowledge of the absolute values of the various entries in the CKM matrix can be
summarized as follows:

|V | =

0

@
0.97417± 0.00021 0.2248± 0.0006 (4.1± 0.4)⇥ 10�3

0.2249± 0.0005 0.9735± 0.0001 (4.05± 0.15)⇥ 10�2

(8.7± 0.3)⇥ 10�3 (4.03± 0.13)⇥ 10�2 0.99915± 0.00005

1

A . (69)

4 Flavor changing neutral current (FCNC) processes

A very useful class of FCNC is that of neutral meson mixing. Nature provides us with four pairs of
neutral mesons: K0�K

0, B0�B
0, B0

s �B
0
s , and D

0�D
0. Mixing in this context refers to a transition

such as K0 ! K
0 (s̄d ! d̄s).3 The experimental results for CP conserving and CP violating observables

related to neutral meson mixing (mass splittings and CP asymmetries in tree level decays, respectively)
are given in Table 5.

4.1 The SM suppression factors

Our aim in this section is to explain the suppression factors that affect FCNC within the SM.
(a) Loop suppression. The W -boson cannot mediate FCNC processes at tree level, since it cou-

ples to up-down pairs, or to neutrino-charged lepton pairs. Obviously, only neutral bosons can mediate
FCNC at tree level. The SM has four neutral bosons: the gluon, the photon, the Z-boson and the

3These transitions involve four-quark operators. When calculating the matrix elements of these operators between meson-
antimeson states, approximate symmetries of QCD are of no help. Instead, one uses lattice calculations to relate, for example,
the B0 ! B0 transition to the corresponding quark process, b̄d ! d̄b.
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Fig. 3: Allowed region in the ⇢, ⌘ plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub|), mass differences in the B

0 (�md) and Bs (�ms) neutral meson systems, and CP violation in
K ! ⇡⇡ ("K), B !  K (sin 2�), B ! ⇡⇡, ⇢⇡, ⇢⇢ (↵), and B ! DK (�). Taken from [12].

– The rates of various B ! ⇡⇡, ⇢⇡, ⇢⇢ decays depend on the phase ↵ = ⇡ � � � �

– The ratio between the mass splittings in the neutral B and Bs systems is sensitive to |Vtd/Vts|2 =
�
2[(1� ⇢)2 + ⌘

2]

– The CP violation in K ! ⇡⇡ decays, ✏K , depends in a complicated way on ⇢ and ⌘ .

The resulting constraints are shown in Fig. 3.
The consistency of the various constraints is impressive. In particular, the following ranges for ⇢

and ⌘ can account for all the measurements [1]:

⇢ = +0.160± 0.007 , ⌘ = +0.350± 0.006 . (111)

One can make then the following statements [13]:
Very likely, flavor changing processes are dominated by the Cabibbo-Kobayashi-Maskawa mecha-

nism and, in particular, CP violation in flavor changing processes is dominated by the Kobayashi-

Maskawa phase.

In the following subsections, we explain how we can remove the phrase “very likely” from this
statement, and how we can quantify the KM-dominance.

6.2 S KS

As an example of how to use FCNC in probing new physics, we take S KS
. When we consider extensions

of the SM, we still do not expect any significant new contribution to the tree level decay, b ! cc̄s,
beyond the SM W -mediated diagram. Thus, the expression Ā KS

/A KS
= (VcbV

⇤
cd
)/(V ⇤

cb
Vcd) remains
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Fig. 5: The evolution of the constraints in the standard CKM unitarity triangle plane from 1995 (left), to just after
the start of B factories (middle), to the present (right). Taken from the ckmfitter website [18].
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Fig. 6: Some of the main CKM constrains and the respective SM diagrams.

which we can rewrite as
VudV ⇤

ub

VcdV ⇤
cb

+ 1 +
VtdV ⇤

tb

VcdV ⇤
cb

= 0. (36)

In terms of the Wolfenstein parameters this sum rule is

�
�
⇢̄ + i⌘̄

�
+ 1 +

�
� 1 + ⇢̄ + i⌘̄

�
= 0. (37)

The relation (36) can be interpreted as a sum of three complex numbers that are the sides of a triangle,
shown in Fig. 4. There are two common notations for the angles of the standard CKM unitarity triangle:
either ↵, �, � or �1, �2, �3, used by the two B-factories, BaBar and Belle, respectively. The Belle
experiment (1999-2010) at KEK, Japan produced about ⇠ 1.5⇥109 B mesons, while BaBar experiment
1999-2008) at SLAC, USA collected about ⇠ 0.9 ⇥ 109 B mesons. The two experiments established
that the KM mechanism is the main source of CP violation in the SM. The progression of constraints in
the CKM unitarity triangle plane is shown in Fig. 5. We see that there was a big qualitative jump after
the start of the B factories, and a very impressive set of improvements in the constraints since then.

The constraints on the standard CKM unitarity triangle are coming from several different meson
systems, the B0

d
, B+ mesons from measurements at Belle, BaBar and LHCb, the Bs meson and ⇤b

9
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1 Introduction

In this set of lectures, we introduce basics of flavor physics, that is, the part of Nature where
the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1

Br(B ! Xµ⌫) = 0.1086(16) (1.1)

Br(B ! Xe⌫) = 0.1086(16) (1.2)

Br(B ! Xs�) = 3.49(19)⇥ 10�4 (1.3)

Br(Bs ! µ+µ�) = 2.4(8)⇥ 10�9 (1.4)

Br(B+
! D̄0`+⌫) = 2.27(11)⇥ 10�2 (1.5)

Br(B�
! ⇡0`�⌫̄) = 7.80(27)⇥ 10�5 (1.6)

Br(KL ! µ+µ�) = 6.84(11)⇥ 10�9 (1.7)

Br(K+
! µ+⌫) = 0.6356(11) (1.8)

Br( ! µ+µ�) = 5.961(33)⇥ 10�2 (1.9)

Br(D ! µ+µ�) < 6.2⇥ 10�9 . (1.10)

Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
particular to specific parameters of this e↵ective theory. In the second part of these lectures, we
tackle the question of how these parameters are actually measured in low-energy systems where
qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.
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qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.

3

UCR-TR-2017-FLIP-K-2SO

E Meson Mixing and CP formulae 111

F Solutions to Problems 114

1 Introduction

In this set of lectures, we introduce basics of flavor physics, that is, the part of Nature where
the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1

Br(B ! Xµ⌫) = 0.1086(16) (1.1)

Br(B ! Xe⌫) = 0.1086(16) (1.2)

Br(B ! Xs�) = 3.49(19)⇥ 10�4 (1.3)

Br(Bs ! µ+µ�) = 2.4(8)⇥ 10�9 (1.4)

Br(B+
! D̄0`+⌫) = 2.27(11)⇥ 10�2 (1.5)

Br(B�
! ⇡0`�⌫̄) = 7.80(27)⇥ 10�5 (1.6)

Br(KL ! µ+µ�) = 6.84(11)⇥ 10�9 (1.7)

Br(K+
! µ+⌫) = 0.6356(11) (1.8)

Br( ! µ+µ�) = 5.961(33)⇥ 10�2 (1.9)

Br(D ! µ+µ�) < 6.2⇥ 10�9 . (1.10)

Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
particular to specific parameters of this e↵ective theory. In the second part of these lectures, we
tackle the question of how these parameters are actually measured in low-energy systems where
qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.

3

[PDG]

198

Flavour data

Admir Greljo | Lectures on EFT in flavour



UCR-TR-2017-FLIP-K-2SO

E Meson Mixing and CP formulae 111

F Solutions to Problems 114

1 Introduction

In this set of lectures, we introduce basics of flavor physics, that is, the part of Nature where
the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1

Br(B ! Xµ⌫) = 0.1086(16) (1.1)

Br(B ! Xe⌫) = 0.1086(16) (1.2)

Br(B ! Xs�) = 3.49(19)⇥ 10�4 (1.3)

Br(Bs ! µ+µ�) = 2.4(8)⇥ 10�9 (1.4)

Br(B+
! D̄0`+⌫) = 2.27(11)⇥ 10�2 (1.5)

Br(B�
! ⇡0`�⌫̄) = 7.80(27)⇥ 10�5 (1.6)

Br(KL ! µ+µ�) = 6.84(11)⇥ 10�9 (1.7)

Br(K+
! µ+⌫) = 0.6356(11) (1.8)

Br( ! µ+µ�) = 5.961(33)⇥ 10�2 (1.9)

Br(D ! µ+µ�) < 6.2⇥ 10�9 . (1.10)

Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
particular to specific parameters of this e↵ective theory. In the second part of these lectures, we
tackle the question of how these parameters are actually measured in low-energy systems where
qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.

3

UCR-TR-2017-FLIP-K-2SO

E Meson Mixing and CP formulae 111

F Solutions to Problems 114

1 Introduction

In this set of lectures, we introduce basics of flavor physics, that is, the part of Nature where
the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1

Br(B ! Xµ⌫) = 0.1086(16) (1.1)

Br(B ! Xe⌫) = 0.1086(16) (1.2)

Br(B ! Xs�) = 3.49(19)⇥ 10�4 (1.3)

Br(Bs ! µ+µ�) = 2.4(8)⇥ 10�9 (1.4)

Br(B+
! D̄0`+⌫) = 2.27(11)⇥ 10�2 (1.5)

Br(B�
! ⇡0`�⌫̄) = 7.80(27)⇥ 10�5 (1.6)

Br(KL ! µ+µ�) = 6.84(11)⇥ 10�9 (1.7)

Br(K+
! µ+⌫) = 0.6356(11) (1.8)

Br( ! µ+µ�) = 5.961(33)⇥ 10�2 (1.9)

Br(D ! µ+µ�) < 6.2⇥ 10�9 . (1.10)

Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
particular to specific parameters of this e↵ective theory. In the second part of these lectures, we
tackle the question of how these parameters are actually measured in low-energy systems where
qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.

3

[PDG]

199

Flavour data

Admir Greljo | Lectures on EFT in flavour

?



UCR-TR-2017-FLIP-K-2SO

E Meson Mixing and CP formulae 111

F Solutions to Problems 114

1 Introduction

In this set of lectures, we introduce basics of flavor physics, that is, the part of Nature where
the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1

Br(B ! Xµ⌫) = 0.1086(16) (1.1)

Br(B ! Xe⌫) = 0.1086(16) (1.2)

Br(B ! Xs�) = 3.49(19)⇥ 10�4 (1.3)

Br(Bs ! µ+µ�) = 2.4(8)⇥ 10�9 (1.4)

Br(B+
! D̄0`+⌫) = 2.27(11)⇥ 10�2 (1.5)

Br(B�
! ⇡0`�⌫̄) = 7.80(27)⇥ 10�5 (1.6)

Br(KL ! µ+µ�) = 6.84(11)⇥ 10�9 (1.7)

Br(K+
! µ+⌫) = 0.6356(11) (1.8)

Br( ! µ+µ�) = 5.961(33)⇥ 10�2 (1.9)

Br(D ! µ+µ�) < 6.2⇥ 10�9 . (1.10)

Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
particular to specific parameters of this e↵ective theory. In the second part of these lectures, we
tackle the question of how these parameters are actually measured in low-energy systems where
qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.

3

UCR-TR-2017-FLIP-K-2SO

E Meson Mixing and CP formulae 111

F Solutions to Problems 114

1 Introduction

In this set of lectures, we introduce basics of flavor physics, that is, the part of Nature where
the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1

Br(B ! Xµ⌫) = 0.1086(16) (1.1)

Br(B ! Xe⌫) = 0.1086(16) (1.2)

Br(B ! Xs�) = 3.49(19)⇥ 10�4 (1.3)

Br(Bs ! µ+µ�) = 2.4(8)⇥ 10�9 (1.4)

Br(B+
! D̄0`+⌫) = 2.27(11)⇥ 10�2 (1.5)

Br(B�
! ⇡0`�⌫̄) = 7.80(27)⇥ 10�5 (1.6)

Br(KL ! µ+µ�) = 6.84(11)⇥ 10�9 (1.7)

Br(K+
! µ+⌫) = 0.6356(11) (1.8)

Br( ! µ+µ�) = 5.961(33)⇥ 10�2 (1.9)

Br(D ! µ+µ�) < 6.2⇥ 10�9 . (1.10)

Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼ |V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼ |V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼ 1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼ 200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡ (pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡ (pb − pτ )2- or u ≡ (pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
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pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼ 1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼ 200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡ (pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡ (pb − pτ )2- or u ≡ (pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼ |V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼ |V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼ 1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼ 200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡ (pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡ (pb − pτ )2- or u ≡ (pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW ≃ 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄kℓ

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄kℓ

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµνℓl
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, ℓi
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons (ℓi ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µνℓl

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d jℓkνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
ℓkℓ̄l and/or did̄ j → ℓkℓ̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution ℓR ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µℓk
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL ≃ cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le ≃ cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼ |V cb| ≃ 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) ≃ cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼ |V ub| ≃ 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼ 1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼ 200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡ (pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡ (pb − pτ )2- or u ≡ (pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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Flavor physics of the Higgs Boson



H0 → v + h
2.3.4 Yukawa interactions
The Yukawa interactions are given by

LYuk = � h

v
(me eL eR +mµ µL µR +m⌧ ⌧L ⌧R

+mu uL uR +mc cL cR +mt tL tR +md dL dR +ms sL sR +mb bL bR + h.c.
�

.

To see that the Higgs boson couples diagonally to the quark mass eigenstates, let us start from an
arbitrary interaction basis:

hDLY
d
DR = hDL(V

†
dL
VdL)Y

d(V †
dR

VdR)DR

= h(DLV
†
dL
)(VdLY

d
V

†
dR

)(VdRDR)

= h(dL sL bL)Ŷ
d(dR sR bR)

T
. (46)

We conclude that the Higgs couplings to the fermion mass eigenstates have the following features:

1. Diagonality.

2. Non-universality.

3. Proportionality to the fermion masses: the heavier the fermion, the stronger the coupling. The
factor of proportionality is m /v.

Thus, the Higgs boson decay is dominated by the heaviest particle which can be pair-produced in
the decay. For mh ⇠ 125 GeV, this is the bottom quark. Indeed, the SM predicts the following branching
ratios quoted in Table 3 for the leading decay modes. The following comments are in order with regard
to the predicted branching ratios:

1. From the seven branching ratios, three (b, ⌧, c) stand for two-body tree-level decays. Thus, at tree
level, the respective branching ratios obey BR

b̄b
: BR⌧+⌧� : BRcc̄ = 3m2

b
: m2

⌧ : 3m2
c . QCD

radiative corrections somewhat suppress the two modes with the quark final states (b, c) compared
to one with the lepton final state (⌧ ).

2. The WW
⇤ and ZZ

⇤ modes stand for the three-body tree-level decays, where one of the vector
bosons is on-shell and the other off-shell.

3. The Higgs boson does not have a tree-level coupling to gluons since it carries no color (and the
gluons have no mass). The decay into final gluons proceeds via loop diagrams. The dominant
contribution comes from the top-quark loop.

4. Similarly, the Higgs decays into final two photons via loop diagrams with small (BR�� ⇠ 0.002),
but observable, rate. The dominant contributions come from the W and the top-quark loops which
interfere destructively.

Experimentally, the decays into final ZZ
⇤, WW

⇤, ��, bb̄ and ⌧
+
⌧
� have been established.

2.4 Global symmetries

The SM has an accidental global symmetry:

G
SM
global(Y

u,d,e 6= 0) = U(1)B ⇥ U(1)e ⇥ U(1)µ ⇥ U(1)⌧ . (47)

This symmetry leads to various testable predictions. Here are a few examples:

– The proton must not decay, e.g. p ! e
+
⇡ is forbidden.

– FCNC decays of charged leptons must not occur, e.g. µ ! e� is forbidden.

88

• In the SM

qi

qi

�, Z

qi

qi

g
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qi

h

dj

ui

W

Vij

Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the

5

• Diagonal

• Non-universal

• Proportional to the fermion masses

• Real in the mass basis
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• Beyond the SM
New sources of flavour and (or) EWS breaking would 
change these predictions!
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• Beyond the SM

• 2HDM example

−ℒYuk = f̄ Yf
i HiF

Add another Higgs doublet  where Hi i = 1,2

Mf = Yf
1v1 + Yf

2v2

h = h1 cos α + h2 sin α

New sources of flavour and (or) EWS breaking would 
change these predictions!

In general, the Higgs boson can have couplings that are neither 
proportional to the mass matrix nor diagonal, nor CP conserving.
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• Beyond the SM

• 2HDM example • SM EFT example

−ℒYuk = f̄ Yf
i HiF

Add another Higgs doublet  where Hi i = 1,2

Mf = Yf
1v1 + Yf

2v2

h = h1 cos α + h2 sin α

Add a dim-6 SM EFT correction

−ℒYuk = f̄ Yf
1HF +

1
Λ2

f̄ Yf
2HF H†H

Mf ∝ Yf
1 + Yf

2
v2

Λ2
h : Yf

1 + 3 Yf
2

v2

Λ2

New sources of flavour and (or) EWS breaking would 
change these predictions!

In general, the Higgs boson can have couplings that are neither 
proportional to the mass matrix nor diagonal, nor CP conserving.
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]
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(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the
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• Diagonal couplings

1610.07922, Section IV.6.2.c,  
LHC Higgs Cross Section Working Group

Chapter IV.6. Exotic Higgs Decays 629

1482, 1485, 1487, 1489, 1503])

t = 1.43 ± 0.23, b = 0.60 ± 0.18, c . 6.2, (IV.6.13)

s < 65, d < 1.4 · 103, u < 3.0 · 103, (IV.6.14)

⌧ = 0.88 ± 0.13, µ = 0.2+1.2
�0.2, e . 630. (IV.6.15)

Here, t,b,c,s,d,u,⌧ constraints have been obtained by allowing BSM particles to modify the h ! gg
and h ! �� couplings, i.e. �g,� were floated, while assuming that there are no new decay channels,
BRBSM = 0. The µ,e were required to be non-negative and, in addition, when obtaining the respective
bounds, �g,� were set to zero. The upper bounds on c,s,d,u roughly correspond to the size of the SM
bottom Yukawa coupling and are thus much bigger than the corresponding SM Yukawa couplings. The
upper bounds can be saturated only if one allows for large cancellations between the contribution to
fermion masses from the Higgs vev and an equally large but opposite in sign contribution from NP. We
will show that in models of NP motivated by the hierarchy problem, the effects of NP are generically
well below these bounds.

The CP-violating flavour-diagonal Yukawa couplings, ̃f , are well constrained from bounds on
the electric dipole moments (EDMs) [637–639] under the assumption of no other contribution to EDMs
beyond the Higgs contributions. The flavour violating Yukawa couplings are well constrained by the
low-energy flavour-changing neutral current measurements [1490, 1504, 1505]. A notable exception are
the flavour-violating couplings involving a tau lepton. The strongest constraints on ⌧µ, µ⌧ , ⌧e, e⌧

are thus from direct searches of flavour-violating Higgs boson decays at the LHC [1506, 1507]. This is
especially interesting in light of a potential hint of a signal in h ! ⌧µ [1507, 1508].

In the rest of the section we review the expected sizes of i in popular models of weak scale
NP, some of them motivated by the hierarchy problem. At the end of the section we also discuss the
implications of a potential nonzero Br(h ! ⌧µ) close to the present experimental upper bound [1506].

IV.6.2.c.i Modified Yukawa couplings and electroweak New Physics
Tables 165, 166, and 167, adapted from [1509–1513], summarize the predictions for the effective
Yukawa couplings, f , in the Standard Model, multi-Higgs-doublet models (MHDM) with natural flavour
conservation (NFC) [1193,1194], the MSSM at tree level, a single Higgs doublet with a Froggat-Nielsen
mechanism (FN) [1514], the Giudice-Lebedev model of quark masses modified to 2HDM (GL2) [1515],
NP models with minimal flavour violation (MFV) [700], Randall-Sundrum models (RS) [1516], and
models with a composite Higgs where Higgs is a pseudo-Nambu-Goldstone boson (pNGB) [769, 770,
772,1517]. The flavour-violating couplings in the above set of NP models are collected in Tables 168 and
169. Next, we briefly discuss each of the above models, and show that the effects are either suppressed
by 1/⇤2, where ⇤ is the NP scale, or are proportional to the mixing angles with the extra scalars.

Dimension-Six Operators with Minimal Flavour Violation (MFV). We first assume that there is a
mass gap between the SM and NP. Integrating out the NP states leads to dimension six operators (after
absorbing the modifications of kinetic terms using equations of motion [1518]),

LEFT =
Y 0

u

⇤2 Q̄LHcuR(H†H) +
Y 0

d

⇤2 Q̄LHdR(H†H) +
Y 0

`

⇤2 L̄LH`R(H†H) + h.c. , (IV.6.16)

which correct the SM Yukawa interactions, YuQ̄LHcuR + YdQ̄LHdR + Y`L̄LH`R. Here ⇤ is the NP
scale and Hc = i�2H

⇤. The fermion mass matrices and Yukawa couplings after EWSB are

Mf =
v

p
2

⇣
Yf + Y 0

f
v2

2⇤2

⌘
, yf = Yf + 3Y 0

f
v2

2⇤2 , f = u, d, ` . (IV.6.17)

Because Yf and Y 0
f appear in two different combinations in Mf and in the physical Higgs Yukawa

couplings, yf , the two, in general, cannot be made diagonal in the same basis and will lead to flavour-
violating Higgs boson couplings.
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• Diagonal couplings

- Only third family Yukawas are observed.

1610.07922, Section IV.6.2.c,  
LHC Higgs Cross Section Working Group

Chapter IV.6. Exotic Higgs Decays 629

1482, 1485, 1487, 1489, 1503])

t = 1.43 ± 0.23, b = 0.60 ± 0.18, c . 6.2, (IV.6.13)

s < 65, d < 1.4 · 103, u < 3.0 · 103, (IV.6.14)

⌧ = 0.88 ± 0.13, µ = 0.2+1.2
�0.2, e . 630. (IV.6.15)

Here, t,b,c,s,d,u,⌧ constraints have been obtained by allowing BSM particles to modify the h ! gg
and h ! �� couplings, i.e. �g,� were floated, while assuming that there are no new decay channels,
BRBSM = 0. The µ,e were required to be non-negative and, in addition, when obtaining the respective
bounds, �g,� were set to zero. The upper bounds on c,s,d,u roughly correspond to the size of the SM
bottom Yukawa coupling and are thus much bigger than the corresponding SM Yukawa couplings. The
upper bounds can be saturated only if one allows for large cancellations between the contribution to
fermion masses from the Higgs vev and an equally large but opposite in sign contribution from NP. We
will show that in models of NP motivated by the hierarchy problem, the effects of NP are generically
well below these bounds.

The CP-violating flavour-diagonal Yukawa couplings, ̃f , are well constrained from bounds on
the electric dipole moments (EDMs) [637–639] under the assumption of no other contribution to EDMs
beyond the Higgs contributions. The flavour violating Yukawa couplings are well constrained by the
low-energy flavour-changing neutral current measurements [1490, 1504, 1505]. A notable exception are
the flavour-violating couplings involving a tau lepton. The strongest constraints on ⌧µ, µ⌧ , ⌧e, e⌧

are thus from direct searches of flavour-violating Higgs boson decays at the LHC [1506, 1507]. This is
especially interesting in light of a potential hint of a signal in h ! ⌧µ [1507, 1508].

In the rest of the section we review the expected sizes of i in popular models of weak scale
NP, some of them motivated by the hierarchy problem. At the end of the section we also discuss the
implications of a potential nonzero Br(h ! ⌧µ) close to the present experimental upper bound [1506].

IV.6.2.c.i Modified Yukawa couplings and electroweak New Physics
Tables 165, 166, and 167, adapted from [1509–1513], summarize the predictions for the effective
Yukawa couplings, f , in the Standard Model, multi-Higgs-doublet models (MHDM) with natural flavour
conservation (NFC) [1193,1194], the MSSM at tree level, a single Higgs doublet with a Froggat-Nielsen
mechanism (FN) [1514], the Giudice-Lebedev model of quark masses modified to 2HDM (GL2) [1515],
NP models with minimal flavour violation (MFV) [700], Randall-Sundrum models (RS) [1516], and
models with a composite Higgs where Higgs is a pseudo-Nambu-Goldstone boson (pNGB) [769, 770,
772,1517]. The flavour-violating couplings in the above set of NP models are collected in Tables 168 and
169. Next, we briefly discuss each of the above models, and show that the effects are either suppressed
by 1/⇤2, where ⇤ is the NP scale, or are proportional to the mixing angles with the extra scalars.

Dimension-Six Operators with Minimal Flavour Violation (MFV). We first assume that there is a
mass gap between the SM and NP. Integrating out the NP states leads to dimension six operators (after
absorbing the modifications of kinetic terms using equations of motion [1518]),

LEFT =
Y 0

u

⇤2 Q̄LHcuR(H†H) +
Y 0

d

⇤2 Q̄LHdR(H†H) +
Y 0

`

⇤2 L̄LH`R(H†H) + h.c. , (IV.6.16)

which correct the SM Yukawa interactions, YuQ̄LHcuR + YdQ̄LHdR + Y`L̄LH`R. Here ⇤ is the NP
scale and Hc = i�2H

⇤. The fermion mass matrices and Yukawa couplings after EWSB are

Mf =
v

p
2

⇣
Yf + Y 0

f
v2

2⇤2

⌘
, yf = Yf + 3Y 0

f
v2

2⇤2 , f = u, d, ` . (IV.6.17)

Because Yf and Y 0
f appear in two different combinations in Mf and in the physical Higgs Yukawa

couplings, yf , the two, in general, cannot be made diagonal in the same basis and will lead to flavour-
violating Higgs boson couplings.
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⌧ = 0.88 ± 0.13, µ = 0.2+1.2
�0.2, e . 630. (IV.6.15)

Here, t,b,c,s,d,u,⌧ constraints have been obtained by allowing BSM particles to modify the h ! gg
and h ! �� couplings, i.e. �g,� were floated, while assuming that there are no new decay channels,
BRBSM = 0. The µ,e were required to be non-negative and, in addition, when obtaining the respective
bounds, �g,� were set to zero. The upper bounds on c,s,d,u roughly correspond to the size of the SM
bottom Yukawa coupling and are thus much bigger than the corresponding SM Yukawa couplings. The
upper bounds can be saturated only if one allows for large cancellations between the contribution to
fermion masses from the Higgs vev and an equally large but opposite in sign contribution from NP. We
will show that in models of NP motivated by the hierarchy problem, the effects of NP are generically
well below these bounds.

The CP-violating flavour-diagonal Yukawa couplings, ̃f , are well constrained from bounds on
the electric dipole moments (EDMs) [637–639] under the assumption of no other contribution to EDMs
beyond the Higgs contributions. The flavour violating Yukawa couplings are well constrained by the
low-energy flavour-changing neutral current measurements [1490, 1504, 1505]. A notable exception are
the flavour-violating couplings involving a tau lepton. The strongest constraints on ⌧µ, µ⌧ , ⌧e, e⌧

are thus from direct searches of flavour-violating Higgs boson decays at the LHC [1506, 1507]. This is
especially interesting in light of a potential hint of a signal in h ! ⌧µ [1507, 1508].

In the rest of the section we review the expected sizes of i in popular models of weak scale
NP, some of them motivated by the hierarchy problem. At the end of the section we also discuss the
implications of a potential nonzero Br(h ! ⌧µ) close to the present experimental upper bound [1506].

IV.6.2.c.i Modified Yukawa couplings and electroweak New Physics
Tables 165, 166, and 167, adapted from [1509–1513], summarize the predictions for the effective
Yukawa couplings, f , in the Standard Model, multi-Higgs-doublet models (MHDM) with natural flavour
conservation (NFC) [1193,1194], the MSSM at tree level, a single Higgs doublet with a Froggat-Nielsen
mechanism (FN) [1514], the Giudice-Lebedev model of quark masses modified to 2HDM (GL2) [1515],
NP models with minimal flavour violation (MFV) [700], Randall-Sundrum models (RS) [1516], and
models with a composite Higgs where Higgs is a pseudo-Nambu-Goldstone boson (pNGB) [769, 770,
772,1517]. The flavour-violating couplings in the above set of NP models are collected in Tables 168 and
169. Next, we briefly discuss each of the above models, and show that the effects are either suppressed
by 1/⇤2, where ⇤ is the NP scale, or are proportional to the mixing angles with the extra scalars.

Dimension-Six Operators with Minimal Flavour Violation (MFV). We first assume that there is a
mass gap between the SM and NP. Integrating out the NP states leads to dimension six operators (after
absorbing the modifications of kinetic terms using equations of motion [1518]),

LEFT =
Y 0

u

⇤2 Q̄LHcuR(H†H) +
Y 0

d

⇤2 Q̄LHdR(H†H) +
Y 0

`

⇤2 L̄LH`R(H†H) + h.c. , (IV.6.16)

which correct the SM Yukawa interactions, YuQ̄LHcuR + YdQ̄LHdR + Y`L̄LH`R. Here ⇤ is the NP
scale and Hc = i�2H

⇤. The fermion mass matrices and Yukawa couplings after EWSB are

Mf =
v

p
2

⇣
Yf + Y 0

f
v2

2⇤2

⌘
, yf = Yf + 3Y 0

f
v2

2⇤2 , f = u, d, ` . (IV.6.17)

Because Yf and Y 0
f appear in two different combinations in Mf and in the physical Higgs Yukawa

couplings, yf , the two, in general, cannot be made diagonal in the same basis and will lead to flavour-
violating Higgs boson couplings.
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- Only third family Yukawas are observed.
- Light Yukawa is a pressing issue! Q: Is the same mechanism at work?
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⌧ = 0.88 ± 0.13, µ = 0.2+1.2
�0.2, e . 630. (IV.6.15)

Here, t,b,c,s,d,u,⌧ constraints have been obtained by allowing BSM particles to modify the h ! gg
and h ! �� couplings, i.e. �g,� were floated, while assuming that there are no new decay channels,
BRBSM = 0. The µ,e were required to be non-negative and, in addition, when obtaining the respective
bounds, �g,� were set to zero. The upper bounds on c,s,d,u roughly correspond to the size of the SM
bottom Yukawa coupling and are thus much bigger than the corresponding SM Yukawa couplings. The
upper bounds can be saturated only if one allows for large cancellations between the contribution to
fermion masses from the Higgs vev and an equally large but opposite in sign contribution from NP. We
will show that in models of NP motivated by the hierarchy problem, the effects of NP are generically
well below these bounds.

The CP-violating flavour-diagonal Yukawa couplings, ̃f , are well constrained from bounds on
the electric dipole moments (EDMs) [637–639] under the assumption of no other contribution to EDMs
beyond the Higgs contributions. The flavour violating Yukawa couplings are well constrained by the
low-energy flavour-changing neutral current measurements [1490, 1504, 1505]. A notable exception are
the flavour-violating couplings involving a tau lepton. The strongest constraints on ⌧µ, µ⌧ , ⌧e, e⌧

are thus from direct searches of flavour-violating Higgs boson decays at the LHC [1506, 1507]. This is
especially interesting in light of a potential hint of a signal in h ! ⌧µ [1507, 1508].

In the rest of the section we review the expected sizes of i in popular models of weak scale
NP, some of them motivated by the hierarchy problem. At the end of the section we also discuss the
implications of a potential nonzero Br(h ! ⌧µ) close to the present experimental upper bound [1506].

IV.6.2.c.i Modified Yukawa couplings and electroweak New Physics
Tables 165, 166, and 167, adapted from [1509–1513], summarize the predictions for the effective
Yukawa couplings, f , in the Standard Model, multi-Higgs-doublet models (MHDM) with natural flavour
conservation (NFC) [1193,1194], the MSSM at tree level, a single Higgs doublet with a Froggat-Nielsen
mechanism (FN) [1514], the Giudice-Lebedev model of quark masses modified to 2HDM (GL2) [1515],
NP models with minimal flavour violation (MFV) [700], Randall-Sundrum models (RS) [1516], and
models with a composite Higgs where Higgs is a pseudo-Nambu-Goldstone boson (pNGB) [769, 770,
772,1517]. The flavour-violating couplings in the above set of NP models are collected in Tables 168 and
169. Next, we briefly discuss each of the above models, and show that the effects are either suppressed
by 1/⇤2, where ⇤ is the NP scale, or are proportional to the mixing angles with the extra scalars.

Dimension-Six Operators with Minimal Flavour Violation (MFV). We first assume that there is a
mass gap between the SM and NP. Integrating out the NP states leads to dimension six operators (after
absorbing the modifications of kinetic terms using equations of motion [1518]),
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⇤2 Q̄LHcuR(H†H) +
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d

⇤2 Q̄LHdR(H†H) +
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`

⇤2 L̄LH`R(H†H) + h.c. , (IV.6.16)

which correct the SM Yukawa interactions, YuQ̄LHcuR + YdQ̄LHdR + Y`L̄LH`R. Here ⇤ is the NP
scale and Hc = i�2H

⇤. The fermion mass matrices and Yukawa couplings after EWSB are
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⇣
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⌘
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Because Yf and Y 0
f appear in two different combinations in Mf and in the physical Higgs Yukawa

couplings, yf , the two, in general, cannot be made diagonal in the same basis and will lead to flavour-
violating Higgs boson couplings.
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• Charm Yukawa
• Exclusive Higgs decays to mesons: 

1407.6695, 1406.1722, 1505.03870

• Vh associated production: 
1503.00290,1505.06689,1505.06689 

• Higgs differential distributions: 
1606.09253, 1606.09621

HL-LHC sensitivity 𝒪(yc)

- Only third family Yukawas are observed.
- Light Yukawa is a pressing issue! Q: Is the same mechanism at work?
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LHC Higgs Cross Section Working Group

Chapter IV.6. Exotic Higgs Decays 629

1482, 1485, 1487, 1489, 1503])

t = 1.43 ± 0.23, b = 0.60 ± 0.18, c . 6.2, (IV.6.13)

s < 65, d < 1.4 · 103, u < 3.0 · 103, (IV.6.14)

⌧ = 0.88 ± 0.13, µ = 0.2+1.2
�0.2, e . 630. (IV.6.15)

Here, t,b,c,s,d,u,⌧ constraints have been obtained by allowing BSM particles to modify the h ! gg
and h ! �� couplings, i.e. �g,� were floated, while assuming that there are no new decay channels,
BRBSM = 0. The µ,e were required to be non-negative and, in addition, when obtaining the respective
bounds, �g,� were set to zero. The upper bounds on c,s,d,u roughly correspond to the size of the SM
bottom Yukawa coupling and are thus much bigger than the corresponding SM Yukawa couplings. The
upper bounds can be saturated only if one allows for large cancellations between the contribution to
fermion masses from the Higgs vev and an equally large but opposite in sign contribution from NP. We
will show that in models of NP motivated by the hierarchy problem, the effects of NP are generically
well below these bounds.

The CP-violating flavour-diagonal Yukawa couplings, ̃f , are well constrained from bounds on
the electric dipole moments (EDMs) [637–639] under the assumption of no other contribution to EDMs
beyond the Higgs contributions. The flavour violating Yukawa couplings are well constrained by the
low-energy flavour-changing neutral current measurements [1490, 1504, 1505]. A notable exception are
the flavour-violating couplings involving a tau lepton. The strongest constraints on ⌧µ, µ⌧ , ⌧e, e⌧

are thus from direct searches of flavour-violating Higgs boson decays at the LHC [1506, 1507]. This is
especially interesting in light of a potential hint of a signal in h ! ⌧µ [1507, 1508].

In the rest of the section we review the expected sizes of i in popular models of weak scale
NP, some of them motivated by the hierarchy problem. At the end of the section we also discuss the
implications of a potential nonzero Br(h ! ⌧µ) close to the present experimental upper bound [1506].

IV.6.2.c.i Modified Yukawa couplings and electroweak New Physics
Tables 165, 166, and 167, adapted from [1509–1513], summarize the predictions for the effective
Yukawa couplings, f , in the Standard Model, multi-Higgs-doublet models (MHDM) with natural flavour
conservation (NFC) [1193,1194], the MSSM at tree level, a single Higgs doublet with a Froggat-Nielsen
mechanism (FN) [1514], the Giudice-Lebedev model of quark masses modified to 2HDM (GL2) [1515],
NP models with minimal flavour violation (MFV) [700], Randall-Sundrum models (RS) [1516], and
models with a composite Higgs where Higgs is a pseudo-Nambu-Goldstone boson (pNGB) [769, 770,
772,1517]. The flavour-violating couplings in the above set of NP models are collected in Tables 168 and
169. Next, we briefly discuss each of the above models, and show that the effects are either suppressed
by 1/⇤2, where ⇤ is the NP scale, or are proportional to the mixing angles with the extra scalars.

Dimension-Six Operators with Minimal Flavour Violation (MFV). We first assume that there is a
mass gap between the SM and NP. Integrating out the NP states leads to dimension six operators (after
absorbing the modifications of kinetic terms using equations of motion [1518]),

LEFT =
Y 0

u

⇤2 Q̄LHcuR(H†H) +
Y 0

d

⇤2 Q̄LHdR(H†H) +
Y 0

`

⇤2 L̄LH`R(H†H) + h.c. , (IV.6.16)

which correct the SM Yukawa interactions, YuQ̄LHcuR + YdQ̄LHdR + Y`L̄LH`R. Here ⇤ is the NP
scale and Hc = i�2H

⇤. The fermion mass matrices and Yukawa couplings after EWSB are

Mf =
v

p
2

⇣
Yf + Y 0

f
v2

2⇤2

⌘
, yf = Yf + 3Y 0

f
v2

2⇤2 , f = u, d, ` . (IV.6.17)

Because Yf and Y 0
f appear in two different combinations in Mf and in the physical Higgs Yukawa

couplings, yf , the two, in general, cannot be made diagonal in the same basis and will lead to flavour-
violating Higgs boson couplings.
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- Only third family Yukawas are observed.
- Light Yukawa is a pressing issue! Q: Is the same mechanism at work?

• Charm Yukawa
• Exclusive Higgs decays to mesons: 

1407.6695, 1406.1722, 1505.03870

• Vh associated production: 
1503.00290,1505.06689;1505.06689 

• Higgs differential distributions: 
1606.09253, 1606.09621

HL-LHC sensitivity 𝒪(yc)

• Muon Yukawa

1.2 ± 0.6, ATLAS 2007.07830.

1.2 ± 0.4, CMS CMS-PAS-HIG-19-006.

The observation at the end of Run 3?

Flavor physics of the Higgs Boson
Admir Greljo | Lectures on EFT in flavour
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• Off-diagonal couplings, examples

CMS 1712.07173 

Br(h → τμ) < 0.25 %

Br(h → τe) < 0.61 %

ATLAS 1907.06131

Br(h → τμ) < 0.28 %

Br(h → τe) < 0.47 %

[For New Physics Models Facing Lepton Flavor Violating Higgs Decays at the Percent Level see 1502.07784]
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Flavor physics of the Higgs Boson

1404.1278

Br(t → ch) < 0.11 %
ATLAS, 1812.11568

Br(t → ch) < 0.47 %
CMS, 1712.02399 
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FCNC in Z couplings:  
A BSM example



• Universality of  interactions is guaranteed by the unbroken QCD x QED in 
any extension of the SM. 

• However, the  universality is an accident of the SM field content.
• Eg. let us add to the SM a heavy vector-like quark weak singlet 

γ, g

Z
(UL, UR)Y=2/3

225

A BSM example

Table 2: The SM fermion interactions

interaction fermions force carrier coupling flavor

Electromagnetic u, d, ` A
0

eQ universal
Strong u, d g gs universal

NC weak all Z
0 e(T3�s

2
W

Q)
sW cW

universal
CC weak ūd/¯̀⌫ W

±
gV/g non-universal/universal

Yukawa u, d, ` h yq diagonal

where u1,2,3 = u, c, t, d1,2,3 = d, s, b and `1,2,3 = e, µ, ⌧ . We emphasize the following points:

1. The photon couplings are vector-like and parity conserving.
2. Diagonality: The photon couples to e

+
e
�, µ+

µ
� and ⌧

+
⌧
�, but not to e

±
µ
⌥, e±⌧⌥ or µ±

⌧
⌥

pairs, and similarly in the up and down sectors.
3. Universality: The couplings of the photon to different generations are universal.

All colored fermions (namely, quarks) interact with the gluon:

LQCD, = �gs

2
q�aG/aq , (28)

where q = u, c, t, d, s, b. We emphasize the following points:

1. The gluon couplings are vector-like and parity conserving.
2. Diagonality: The gluon couples to t̄t, c̄c, etc., but not to t̄c or any other flavor changing pair.
3. Universality: The couplings of the gluon to different quark generations are universal.

The universality of the photon and gluon couplings are a result of the SU(3)C ⇥ U(1)EM gauge invari-
ance, and thus hold in any model, and not just within the SM.

2.3.2 Z-mediated weak interactions
All SM fermions couple to the Z-boson:

LZ, =
e

sW cW


�
✓
1

2
� s

2
W

◆
eLiZ/eLi + s

2
W eRiZ/eRi +

1

2
⌫L↵Z/⌫L↵ (29)

+

✓
1

2
� 2

3
s
2
W

◆
uLiZ/uLi �

2

3
s
2
W uRiZ/uRi �

✓
1

2
� 1

3
s
2
W

◆
dLiZ/dLi +

1

3
s
2
W dRiZ/dRi

�
.

where ⌫↵ = ⌫e, ⌫µ, ⌫⌧ . We emphasize the following points:

1. The Z-boson couplings are chiral and parity violating.
2. Diagonality: The Z-boson couples diagonally and, as a result of this, there are no Z-mediated

flavor changing neutral current (FCNC) processes.
3. Universality: The couplings of the Z-boson to different fermion generations are universal.

The universality is a result of a special feature of the SM: all fermions of given chirality and given charge
come from the same SU(2)L ⇥ U(1)Y representation.

85

V × 1 × V† = 1
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• Universality of  interactions is guaranteed by the unbroken QCD x QED in 
any extension of the SM. 

• However, the  universality is an accident of the SM field content.
• Eg. let us add to the SM a heavy vector-like quark weak singlet 

γ, g

Z
(UL, UR)Y=2/3

−ℒ ⊃ YuQLH̃uR + YUQLH̃UR + MULUR

• After EWSB, there will be mixing between SM  and .
• The  couplings will be flavour violating

u U
Z

[VLQ top partners motivated by the composite Higgs]

Admir Greljo | Flavour Physics

A BSM example
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• Universality of  interactions is guaranteed by the unbroken QCD x QED in 
any extension of the SM. 

• However, the  universality is an accident of the SM field content.
• Eg. let us add to the SM a heavy vector-like quark weak singlet 

γ, g

Z
(UL, UR)Y=2/3

−ℒ ⊃ YuQLH̃uR + YUQLH̃UR + MULUR

• After EWSB, there will be mixing between SM  and .
• The  couplings will be flavour violating

u U
Z

∝ (ūL ŪL) γμ V
1
2 − 2

3 s2
W 0

0 − 2
3 s2

W

V† (uL
UL)

≠ 1

Admir Greljo | Flavour Physics
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• Experiments tell us that  interactions are (rather) universal 
 

• We can use this to set limits on BSM with VLQs

Z

2

considers the running of the leading vector-like quark operator and the SM couplings, even if tuned to cancel at one
scale, the quadratic divergences will not cancel at other scales. Thus, the e↵ective theory discussion concerning EW
naturalness should be understood under the implicit assumption that the relation (2) is enforced by symmetry in the
UV complete theory.

Furthermore, even though a (symmetry enforced) relation (2) removes the quadratic UV sensitivity of the Higgs
potential, logarithmically divergent contributions remain present in the e↵ective theory. The biggest resulting shift to
the bare Higgs mass (�mh) is now due to the new heavy quark states with bilinear couplings to the Higgs. Assuming
a single such state (f) cancelling the one-loop quadratically divergent contribution to �mh of the top quark, the
dominant remaining correction is of the form

�m
2
h
⇡

3m2
t

4⇡2v2
m

2
f
log

⇤2

m
2
f

, (3)

where the result was obtained using a hard UV cut-o↵ of the loop momentum integral and equating it with the
cut-o↵ scale of the e↵ective theory ⇤. We immediately observe that allowing for only moderate fine-tuning (requiring
conservatively �m

2
h
/m

2
h
. 10) and the e↵ective theory treatment valid (and thus mf ⌧ ⇤) requires f to be relatively

light (mf . 1 TeV).
Treating the Higgs as a composite field of a strongly interacting theory leads to the appearance of a number of

dimension six operators a↵ecting flavor, EW and Higgs observables (c.f. [5]). However, in models where the new vector-
like quarks (possibly mixing with the chiral quark multiplets) and the Higgs are the lightest composite remnants of
the strongly interacting sector, the dominant e↵ects are expected from operators involving these fields. It is therefore
meaningful to focus primarily on the leading dimension five contributions.1 It turns out that they can always be
parametrized in a way that preserves the form of gauge interactions of the renormalizable theory. Therefore the only
way to approach and constrain such terms is by studying their impact on Higgs phenomenology, which is the main
topic of the present work.2

The paper is structured as follows. In Sec. II we present some general considerations of models with vector-like
quarks including generic flavor, electroweak and Higgs constraints on their interactions, stemming from renormalizable
as well as leading dimension five non-renormalizable terms in the e↵ective Lagrangian. Then in Secs. III – V we consider
three specific model examples and analyze their viability in light of the derived direct and indirect constraints. For
simplicity we will consider examples where vector-like quarks appear in existing weak representations of SM chiral
quarks, thus allowing for kinetic mixing with chiral quark multiplets, with interesting phenomenological consequences.
We summarize our conclusions in Sec. VI. Several supporting derivations and analyses of experimental constraints
have been relegated to the appendices.

II. GENERAL CONSIDERATIONS

A. Renormalizable models

Since all vector-like quark models under consideration only contain colored fermions in SM gauge representations
and charges, we can start by considering the mass matrices of the up- and down-type quarks in the weak (chiral)
eigenbasis

� Lmass = ū
i

L
M

ij

u
u
j

R
+ d̄

i

L
M

ij

d
d
j

R
+ h.c. , (4)

where the indices i, j run over all dynamical quark flavors (including new vector-like generations). The mass matrices
Mu,d can be diagonalized via bi-unitary rotations as Mu,d,diag = U

u,d

L
Mu,dU

u,d†
R

. Consequently, the gauge and Higgs
interactions of physical quarks in the mass eigenbasis can be written in the general form (c.f. [8])

LW = �
g
p
2
(V L

ij
ū
i
�
µ
PLd

j + V
R

ij
ū
i
�
µ
PRd

j)W+
µ

+ h.c. , (5)

LZ = �
g

2cW

�
X

u

ij
ū
i
�
µ
PLu

j
�X

d

ij
d̄
i
�
µ
PLd

j + Y
u

ij
ū
i
�
µ
PRu

j
� Y

d

ij
d̄
i
�
µ
PRd

j
� 2s2

W
J
µ

EM

�
Zµ , (6)

L
(0)
h

= �(Xu

ij
� Y

u

ij
)
mj

v
ū
i
PRu

j
h� (Xd

ij
� Y

d

ij
)
mj

v
d̄
i
PRd

j
h+ h.c. , (7)

1 For a recent analysis of dimension six operator e↵ects in composite Higgs scenarios without dynamical vector-like fermions see [6].
2 For recent related studies in the context of explicit composite Higgs model realisations see [7].

) Zμ

8

III. SINGLET UP-TYPE VECTOR-LIKE QUARK

A. Renormalizable model

As a first example, we consider the SM extended by a vector-like quark pair (UL, UR) in the 12/3 representation of
the SM electroweak group. In the most general renormalizable model the quark Yukawa interactions and mass terms
can be described by the following Lagrangian

� L
(0)
U

= y
ij

d
q̄
i

L
Hd

j

R
+ y

ij

u
q̄
i

L
H̃u

j

R
+ y

i

U
q̄
i

L
H̃UR +MU ŪLUR + h.c. , (22)

where H̃ ⌘ i⌧2H
⇤, H = (G+

, (v + h+ iG0)/
p
2) is the SM Higgs doublet, qi

L
the SM quark doublets and u

i

R
the SM

up-type quark singlets. Note that additional kinetic mixing terms of the form ULu
i

R
can always be rotated away and

reabsorbed into the definitions of yu,U . Furthermore, one can, without loss of generality, choose a weak interaction
basis where yu is diagonal and real. After EW symmetry breaking (EWSB) the mass matrices for up- and down-type
quarks are

Mu =

 
yuv/

p
2 yUv/

p
2

0 MU

!
, Md = (ydv/

p
2) . (23)

The weak gauge and Higgs interactions of 4 (u, c, t, u0) physical up-like and 3 (d, s, b) down-like quarks in this (mass)
eigenbasis are given by eqs. (5)-(7), where V

R = 0, V L is a general 4 ⇥ 3 matrix and X
d = I3⇥3 . Note that in this

model Xu

ii
= 1��u

i
and that tree level constraints on the entries of Xu already severely constrain the admixture of

U within the physical u and c quarks. In particular, we find for the 3⇥ 3 sub-matrix of Xu describing Z and Higgs
couplings to known up-type quark flavours

|X
u
� I|3⇥3 <

2

64
0.001 2.1⇥ 10�4 0.14

0.0026 0.14

0.13

3

75 . (24)

Loop-level u0 e↵ects provide better constraints only on the mixing of the vector-like singlet quark with the top quark.
Neglecting the small mixing with the first two generations (e↵ectively setting y

u,c

U
= 0) the t � u

0 system can be
described by three independent physical parameters: two quark masses (mt,mu0) and a single (left-handed) mixing
angle (✓tU ), which are defined as [34]

tan(2✓tU ) =

p
2vyt

U
MU

M
2
U
� [(yt

u
)2 + (yt

U
)2]v2/2

, (25)

mtmu0 = MUy
t

u

v
p
2
, m

2
t
+m

2
u0 = M

2
U
+

v
2

2
[(yt

u
)2 + (yt

U
)2] . (26)

In terms of these, Xu

tt
= c

2
tU
, Xu

tu0 = ctUstU and X
u

u0u0 = s
2
tU

, where ctU ⌘ cos ✓tU and stU ⌘ sin ✓tU .
Presently, the most sensitive observable to nonzero stU is the ⇢ parameter, which receives a new contribution of the

form [34]

�⇢ =
↵NC

16⇡s2
W

m
2
t

m
2
W

s
2
tU


�(1 + c

2
tU
) + s

2
tU
r + 2c2

tU

r

r � 1
log(r)

�
, (27)

where r ⌘ m
2
u0/m

2
t
and we have neglected terms of higher order in m

2
Z,b

/m
2
t,u0 . A comparison with the experimental

bound of �⇢
exp = 4+3

�4 ⇥ 10�4 [10] yields a constraint on stU as a function of the u
0 mass as shown in Fig. 2.

While the modified top quark coupling to the Higgs boson and the presence of an additional heavy quark can in
principle impact also loop induced Higgs decays, namely h ! gg, h ! �� and h ! Z�, taking into account the
above constraints on X

u

ij
these e↵ects turn out severely suppressed making it impossible in practice to distinguish the

renormalizable model with a singlet vector-like up type quark from the SM in single Higgs production processes.

B. Non-renormalizable models

Extending the above renormalizible model with the leading dimension five operators containing the light SM fields
and UL,R as the only dynamical degrees of freedom below a UV cut-o↵ scale ⇤, Yukawa interactions and mass terms

[Fajfer, AG, Kamenik, Mustac], 1304.4219
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So why do people object abog.at
TeV seat Leptoquarks

L4t y list QiQi St
13151 13 BCS 2

3

a Abrupt violation of the SM
accidental symmetries

Proton decay II y
probesseatesuptoto Tell

µ e f it j probesseatesupto105Tell

Electron EDM Amy probesseatesuptotoTell

LFUV, …U(3)L × U(3)E

CP

U(1)e × U(1)μ × U(1)τ

U(1)B

R(K ) probes up to 102 TeV

Leptoquarks

Just like RPV MSSM…
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The Muon g-2, Fermilab, 2104.03281

Muon (g − 2)

*BMW lattice only  [2002.12347]1.6σ

ℒ6 ⊃
yμ

(0.2 TeV)2

evEW

16π2
μ̄LσμνμR Fμν

A word of caution:  
More EXP/TH work is needed to prove NP is behind these effects.

• New Physics examples

 

SUB e SURI UHH UMB3hm
Q 3 2 46 113

I 2 42 0 3,0
Ur 3 I 213 113

dr 3 l Yz 113

Vr 1 I 0 0 3,0
er I I I 0 3,0
H 1 2 42 0

OI I 1 O 3

Sz I 3 113 813

X
im

n f M

ℒ6 ⊃
yt

(10 TeV)2

evEW

16π2
μ̄LσμνμR Fμν

Z′ 

 

b SMM LHCb CERN

otterQQ
b M

S
S µ

G 2ii Muong2Fermilab
XH's

ge LIGvHµrB
16Th Teh

g I
i

µ µ

Y.NO 0
HMn0lTeV1

LQ

*combined
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ℓi
L ℓj

R

γ

Br(μ → eγ)
3 × 10−13

≈ (
Δaμ

3 × 10−9 )
2

( θ12

10−5 )
2

Br(τ → μγ)
4 × 10−8

≈ (
Δaμ

3 × 10−9 )
2

( θ23

10−2 )
2

Naive BSM expectation is wrong! 
θ12 ∼ me /mμ ∼ 𝒪(10−1)

θ23 ∼ mμ/mτ ∼ 𝒪(10−1)

Nearly exact U(1)e × U(1)μ × U(1)τ?

cLFUV but no cLFV

Admir Greljo | Flavour Physics



• Extend the SM gauge group with the lepton flavour non-universal . 
 
 
 

• Natural framework for cLFUV without cLFV.
•  gauge boson is a potential mediator behind flavour anomalies.

U(1)X

U(1)X

Gauged lepton flavor

e μ τGauged U(1)X

233

Altmannshofer, Gori, Pospelov, Yavin; 1403.1269, 
Crivellin, D’Ambrosio, Heeck; 1501.00993,  
Celis, Fuentes-Martin, Jung, Serodio; 1505.03079, 
Crivellin, Fuentes-Martin, AG, Isidori; 1611.02703,  
Alonso, Cox, Han,  Yanagida; 1705.03858,  
Bonilla, Modak, Srivastava, Valle; 1705.00915,  
Ellis, Fairbairn,Tunney; 1705.03447; 
Allanach, Davighi;1809.01158,  
Altmannshofer, Davighi, Nardecchia; 1909.02021,  
Allanach; 2009.02197,  
+ many more …
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• Another potential mediator

• Charge a leptoquark under .U(1)X

• Extend the SM gauge group with the lepton flavour non-universal . 
 
 
 

• Natural framework for cLFUV without cLFV.
•  gauge boson is a potential mediator behind flavour anomalies.

U(1)X

U(1)X

Gauged lepton flavor

e μ τGauged U(1)X

qμS

qeS, qτS, qqS†

qqS†H, qqS†ϕ
234

• Gauge 
symmetry 
selection 
rules:

Davighi, Kirk, Nardecchia, 2007.15016
AG, Stangl, Thomsen, 2103.13991

Hambye, Heeck; 1712.04871

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518
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• Another potential mediator

• Charge a leptoquark under .U(1)X

• Extend the SM gauge group with the lepton flavour non-universal . 
 
 
 

• Natural framework for cLFUV without cLFV.
•  gauge boson is a potential mediator behind flavour anomalies.

U(1)X

U(1)X

Gauged lepton flavor

e μ τGauged U(1)X

qμS

qeS, qτS, qqS†

qqS†H, qqS†ϕ
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• Gauge 
symmetry 
selection 
rules:

Davighi, Kirk, Nardecchia, 2007.15016
AG, Stangl, Thomsen, 2103.13991

Hambye, Heeck; 1712.04871

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

The accidental symmetry of  is 
 and 

the LQ charge is 

ℒ4
U(1)B × U(1)e × U(1)μ × U(1)τ

( −1/3, 0, −1, 0 )

“Muoquark”

⟹
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