

The ASTRI Mini Array of Cherenkov telescopes

A.Giuliani (INAF / IASF Milano) for the ASTRI Project

GAMMA 2022

The ASTRI Mini-Array Project

Observatorio del Teide in Tenerife (Spain) in collaboration with IAC.

More than 150 researchers belonging to

- INAF institutes (IASF-MI, IASF-PA, OAS, OACT, OAB, OAPD, OAR) • Italian Universities (Uni-PG, Uni-PD, Uni-CT, Uni-GE, PoliMi) & INFN
- Fundacion Galileo Galilei
- International institutions (IAC Spain, University of Sao Paulo Brazil, North-West University – South Africa, Université / Observatoire de Geneve CH).

Italian and foreign industrial companies are and will be involved in the ASTRI Mini-Array project with important industrial return.

The ASTRI Mini-Array is a project whose purpose is to construct, deploy and operate an array of 9 Cherenkov telescopes of the 4 meters class at the

ASTRI HORN

ASTRI

(Astrofisica con Specchi a Tecnologia Replicante Italiana) was born as "Progetto Bandiera" funded by MIUR with the initial aim to design and realize an innovative end-to-end prototype of the 4 meters class telescopes in the framework of the CTA observatory

ASTRI-Horn.

ASTRI prototype at OACT in Serra La Nave, Etna Volcano

First detection of a gamma-ray source (Crab Nebula) above 5σ with a dual-mirror, **Schwarzschild-Coud** er Chrenkov telescope (Lombardi et al., 2020)

ASTRI Mini-Array @ Teide Observatory

- Under construction at the Observatorio del Teide (Tenerife), in collaboration with IAC
- Being developed in all its aspects, from design/implementation of all HW/SW components to dissemination of final scientific products
- Unprecedented performance and wide FoV for observations at TeV/multi-TeV energy scale
- **Core Science Program** in the first 3 years
- Important synergies with other Northern ground-based gamma-ray facilities (LHAASO, HAWC, MAGIC, VERITAS, CTAO-N)

- The current design of the ASTRI electromechanical structure is an evolution of the ASTRI-Horn prototype telescope.
- Electro-mechanical structure has been optimized in terms of mass, functionality and maintainability (mass has been reduced by 30%).

M2 support structure

- The optical design is based on a modified (Vassiliev) al. (2007), see also Sironi et Schwarzschild-Couder configuration.
- This configuration allows better correction of aberrations at large incident angles even for small focal ratios and hence facilitates the construction of compact telescopes.
- optical system enables good angular • This resolution across the entire field of view and allows reducing the focal length and therefore the physical pixel and overall camera size.

(2017)

- The optical design is based on a modified (Vassiliev) al. (2007), see also Sironi et Schwarzschild-Couder configuration.
- This configuration allows better correction of aberrations at large incident angles even for small focal ratios and hence facilitates the construction of compact telescopes.
- optical system enables good angular • This resolution across the entire field of view and allows reducing the focal length and therefore the physical pixel and overall camera size.

(2017)

ASTRI Camera

SiPM matrices

- The SiPM produced by Hamamatsu photonics (7x7 mm^2) grouped in matrices of 8x8 pixels
- 37 matrices are arranged to adapt to the curved focal plane of the telescope.
- innovative electronics for peak detection(CITIROC ASICS, WEEROC-INAF) ⇒ smalls mount of data
- Interferential filter as front window (Romeo et al. (2018) and Catalano et al. (2018)) that allows to reduce the contribution from the night sky background at wavelengths greater than 550 nm where the sensitivity of SiPM detector is still high.

PHOTON IS OUR BUSINESS

The ASTRI Mini-Array locations

The ASTRI Mini-Array in Tenerife

- Telescope Array & auxiliaries (Observatorio del Teide OT)
- Local Control Room @ THEMIS building (OT)
- On site Data Centre @ IAC Teide Residencia (OT)
- Array operation center @IACTEC in La Laguna

The ASTRI Mini-Array in Italy

- Data Centre in Rome
- Remote Array operation centers

1 0

Software: data & information flow

Interaction with actors

- The ASTRI Mini-Array software is envisioned to handle an observing cycle, i.e. the end-to-end control and data flow system. The observing cycle can be divided into the following main phases:
- **Observation** preparation
- **Observation execution** 2.
- Data Processing 3.
- Dissemination 4.

Software development mainly by INAF

Support by external companies/research institutions on specific aspects as for example:

- Central Control System by Universidad Tecnica Federico Santa Maria (SCADA)
- Operator Human Machine Interface by University of Geneve (SCADA)

ASTRI Performances

Expected performance

Sensitivity: better than that of current IACTs (E > a few TeV)

• Extend the spectra of already detected sources and/or measure cut-offs

12

ASTRI Performances

Expected performance

Sensitivity: better than that of current IACTs (E > a few TeV)

• Extend the spectra of already detected sources and/or measure cut-offs

Energy/Angular resolution: ~ 10% / ~ 3' (E > a few TeV)

• Characterize the morphology of extended sources at the highest VHE

Wide FoV (≥ 10°), with almost homogeneous off-axis acceptance

- Optimal for multi-target fields, surveys, and extended sources
- Enhanced chance for serendipity discoveries

The ASTRI Mini-Array operations

- Hosting agreement foresees 4 + 4 years of operations for the ASTRI Mini-Array starting from beginning of operations
- During the first 3 years of operations the array will be run as an experiment
- The ASTRI Science team will develop a strategy to concentrate the observational time on a limited number of programs with clearly identified objectives
- After this initial period the project will gradually move towards an observatory model in which a fraction of the time will be assigned to scientific proposals through a Time Allocation Committee procedure

ASTRI Science

- Pillar 1 : Origin of CRs
 - PeVatrons
 - CRs Propagation
 - Pulsar Wind Nebulae

Pillar 2 : Cosmology and Fundamental Physics

Name	Гуре	Req. Exposure (Hrs)
Tycho Snr	SNR	400
Gal. Center	Diffuse	260
VER J1907	SNR+PWN	500
G106.3+2.7	SNR	200
γ-Cygni	SNR	500
W28	SNR/MC	500
M82	Starburst	400
Crab	PWN	300
Geminga	PWN	500
IC 310	Radio gal	10-500
M87	Radio gal	10-500
Mkn 501	Blazar	5-500
1ES 0229+200	Blazar	200-250

15

ASTRI Science

- Pillar 1 : Origin of CRs
 - **PeVatrons**
 - **CRs Propagation**
 - **Pulsar Wind Nebulae**

Pillar 2 : Cosmology and Fundamental **Physics**

Name	Гуре	Req. Exposure (Hrs)
Tycho Snr	SNR	400
Gal. Center	Diffuse	260
VER J1907	SNR+PW	
G106.3+2.7	SNR	Large
γ-Cygni	SNR	
W28	SNR/MC	exposures
M82	Starburst	
Crab	PWN	are required
Geminga	PWN	
IC 310	Radio gal	10-500
M87	Radio gal	10-500
Mkn 501	Blazar	5-500
1ES 0229+200	Blazar	200-250

16

Observing Plan

Large exposures are required Issue :

Strategy :

Focus on few sky fields \rightarrow Long exposures

3 aces up the sleeve :

- Large FoV
- Large Z.A.
- Observations with moonlight

- \rightarrow Several sources in the FOV
- Increase Aeff @ high energies \rightarrow
- \rightarrow ASTRI Camera can deal with high NSB

Observing Plan

Large exposures are required Issue :

Strategy :

Focus on few sky fields \rightarrow Long exposures

3 aces up the sleeve :

- Large FoV
- Large Z.A.

- Observations with moonlight

- \rightarrow Several sources in the FOV
- Increase Aeff @ high energies \rightarrow
- \rightarrow ASTRI Camera can deal with high NSB

NSB with MoonLight

• SkyCalc

SpecSim (<u>https://specsim.readthedocs.io</u>) Based on the model by *Krisciunas&Schaefer*

Brightness in V [mag/arcsec²]

SkyCalc SpecSim diff Fluxes

halfmoon_sep20	20.04	20.03	0.9 %
halfmoon_sep40	20.47	20.52	4.7 %
halfmoon_sep60	20.68	20.75	6.7 %
fullmoon_sep40	18.33	18.30	2.8 %

NBS with MoonLight

• Dark : $m_v = 21.55$

(the Geminga Halo)

Observation duty-cycle

Moonless Night Hours	1
Fraction of clear nights (cloud coverage $<20\%$)	0
Fractional loss due to bad weather	0
Fractional loss due to "Calima"	0
Average Annual Observation Time	1
Interage Inniaar observation Inne	1

Setting 15 NSB as limit → AAOT ~ 1800 h

Status of the infrastructure

- All telescope foundations completed
- Excavations and tubes for power and data network completed
- Control room @ Themis completed
- Data Centre completed by half June
- Transformation Centre to be completed by the end of June with UPS and Power diesel generator
- Electric cables & optical fibres being laid

Infrastructure: foundations

Status of production: ASTRI-1 integration

EIE GROUP

ASTRI-1: disassembling, packing and transportation

1st truck leaving 6/6/2022

29

Assembling ASTRI-1

ASTRI-1

Photo CREDITS Tommaso Marchiori

ASTRI-1: mirrors

Photo CREDITS Tommaso Marchiori

Astri web site : <u>http://astri.me.oa-brera.inaf.it/</u>

Science papers on JHEAP, 2022, 35

On socials, search for **ASTRIgamma** (FB and Instagram)

IRFs (gammapy and ctools compatible) soon released on *Zenodo.org*

L

Photo CREDITS Tommaso Marchiori

Back up slides

The ASTRI Mini-Array – Performance

- We extend current IACTs differential sensitivity up to several tens of TeV and beyond
- emission at several tens of TeV expected from Galactic PeVatrons

Investigate possible spectral features at VHE, such as the presence of spectral cut-offs or the detection of

