RS Ophiuchi nova outburst detection by the LST-1

A. Aguasca-Cabot, M. I. Bernardos Martín, D. Green, Y. Kobayashi and R. López-Coto for the CTA LST project.

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy July 6th, 2022

Outline

- RS Ophiuchi
- Large-Sized Telescope prototype LST-1
- LST-1 observation mode and data analysis
- RS Ophiuchi observations with LST-1
- Results
- Conclusions

RS Ophiuchi

- Symbiotic binary
 - White dwarf and red giant
- Recurrent nova outbursts
 - Thermonuclear runaway
 - Outburst every \sim 15 years
 - August 2021: First detection of a nova at VHEs (H.E.S.S. Collaboration 2022, Acciari et al. 2022).
- First detection of a nova at HE in 2010 (Fermi-LAT Collaboration 2010).

Credit: David A.Hardy/ www.astroart.org & PPARC.

Large-Sized Telescope prototype LST-1

- Cherenkov Telescope Array Observatory (CTAO)
 - Future observatory at VHEs
 - Northern hemisphere: La Palma
 - Southern hemisphere: Paranal
 - Three telescope types

Figure from: https://www.cta-observatory.org/.

Large-Sized Telescope prototype LST-1

- Cherenkov Telescope Array Observatory (CTAO)
 - Future observatory at VHEs
 - Northern hemisphere: La Palma
 - Southern hemisphere: Paranal
 - Three telescope types
- LST-1: Large-Sized Telescope prototype
 - Currently under commissioning phase
 - Good sensitivity at tens to hundreds of GeVs
 - Fast re-positioning speed to follow-up transient sources

Figure from: https://www.cta-observatory.org/.

Friday 8th: Status of LST Project by J. Cortina

LST-1 observation mode and data analysis

• Observation mode

- Mono-trigger analysis
 - Single telescope observation mode
- Wobble mode: offset angle between nominal source position and telescope pointing position.

LST-1 observation mode and data analysis

Observation mode

- Mono-trigger analysis
 - Single telescope observation mode
- Wobble mode: offset angle between nominal source position and telescope pointing position.

Analysis method

- Source-dependent analysis
 - Prior knowledge of the source position
 - RS Ophiuchi observations: LST-1 energy threshold down to ~45 GeV

LST-1 observation mode and data analysis

Observation mode

- Mono-trigger analysis
 - Single telescope observation mode
- Wobble mode: offset angle between nominal source position and telescope pointing position.

Analysis method

- Source-dependent analysis
 - Prior knowledge of the source position
 - RS Ophiuchi observations: LST-1 energy threshold down to ~45 GeV
- Analysis using MC simulations at a fixed sky position
 - A dedicated analysis with refined MC simulations is ongoing

RS Ophiuchi observations with LST-1

• Exclude runs with low transmission

Date (yyyy/mm/dd)	T-T0 (days)	Zenith angle (deg)	Atmospheric transmission 9km* (%)	Observation time after cuts (h)	
2021-08-09	0.97	36-41	> 90	1.43	
2021-08-10	1.97	36-56	> 90	2.69	Right after
2021-08-12	3.97	36-48	> 90	2.27	outburst
2021-08-13	4.99	37-51	15 - 90		
2021-08-14	5.97	37-51	65		Bad atmospheric
2021-08-15	7.03	41-54	55		
2021-08-29	21.01	36-41	> 80	0.97	
2021-08-30	21.97	36-41	> 80	1.52	After moon
2021-09-01	24.05	61-64	> 90	0.32	break
2021-09-02	24.98	61-64	> 90	1.28	

T0 = 59434.93 MJD

* MAGIC LIDAR measurements

RS Ophiuchi observations with LST-1

- Exclude runs with low transmission
- Analysis using only observations right after the outburst

Date (yyyy/mm/dd)	T-T0 (days)	Zenith angle (deg)	Atmospheric transmission 9km* (%)	Observation time after cuts (h)	
2021-08-09	0.97	36-41	> 90	1.43	
2021-08-10	1.97	36-56	> 90	2.69	Right after
2021-08-12	3.97	36-48	> 90	2.27	outburst
2021-08-13	4.99	37-51	15 - 90		
2021-08-14	5.97	37-51	65		Bad atmospheric
2021-08-15	7.03	41-54	55		
2021-08-29	21.01	36-41	> 80	0.97	
2021-08-30	21.97	36-41	> 80	1.52	After moon
2021-09-01	24.05	61-64	> 90	0.32	break
2021-09-02	24.98	61-64	> 90	1.28	

T0 = 59434.93 MJD

* MAGIC LIDAR measurements

Results: Alpha plot

- Detection right after the outburst (Aug. 9, 10 and 12)
 - Alpha plot: angle distribution between event's major axis and:
 - Nominal source position (ON)
 - Reflected background positions (OFF)
 - Li & Ma significance*
 - 7.5
 - Signal-to-noise ratio
 - 4.8 %

* Equation 17, Li & Ma 1983

Results: Spectral Energy Distribution (SED)

• LST-1 & Fermi-LAT: 4-days average RS Ophiuchi SED

- Best LST-1 fit model and flux points (blue)
 - Observations from Aug. 9, 10 and 12
- Fermi-LAT dedicated analysis (black)
 - Average over LST-1 observation dates (Aug. 9-12)
- Smooth transition

Results: Spectral Energy Distribution (SED)

• LST-1, MAGIC and H.E.S.S. SEDs

- LST-1, average analysis* (Aug. 9, 10 and 12)
- MAGIC, 4-days joint analysis (Aug. 9-12)
- H.E.S.S. August 9th & 13th SEDs
- Compatible SEDs

MAGIC flux points (black) from Acciari et al. 2022. H.E.S.S. flux points from H.E.S.S. Collaboration 2022.

* Stack all observations into a single binned array

Results: Light curve

- LST-1 and MAGIC light curves
 - Daily and average fluxes for August 9, 10 and 12
 - Compatible average fluxes
 - Compatible daily fluxes
 - Light curve compatible with a constant flux for the first days

MAGIC light curve from Acciari et al. 2022.

Clear detection of RS Ophiuchi by LST-1

6.4 h observations in the first 5 days after the outburst. Detection significance of ~ 7.5 sigma.

- LST-1 allows us to study RS Ophiuchi down to ~45 GeV LST-1 data smoothly connects with Fermi-LAT data. Physical interpretation is ongoing.
- Preliminary results compatible with MAGIC/H.E.S.S. results
- LST-1 has exceptional capabilities for transient source studies below 100 GeV

High effective area < 100 GeV makes LST-1 perfect for transient sources.

RS Ophiuchi nova outburst detection by the LST-1

A. Aguasca-Cabot, M. I. Bernardos Martín, D. Green, Y. Kobayashi and R. López-Coto for the CTA LST project.

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy July 6th, 2022

Backup

Backup: source-dependent

No detection after moon break (T-T₀ > 21 days)

Backup: source-independent

- Detection right after the outburst (first 4 days)
 - Theta² plot: squared angular distance distribution between event's direction and
 - Nominal source position (ON)
 - Reflected background positions (OFF)
 - Li & Ma significance*
 - 5.7
 - Signal-to-noise ratio
 - 5.9 %

Backup: source-independent

No detection after moon break (T-T₀ > 21 days)

