

Summary:

DESY

- Very-High-Energy component of GRB 190114C¹
- component synchrotron model²
- we find for the first time interval (68-110s):
- we find no significant preference in the second time interval (110-180s)

• Synchrotron-Self Compton (SSC) proposed as natural emission mechanism for • we evaluate the statistical preference for the existence of this component against a single-

 \rightarrow existing analysis agrees with statistical preference for inverse Compton component → *Fermi*-LAT data at dip is not strong enough for significant constraints → *Swift*-XRT data drives preference for new component, which can be significantly alleviated by including realistic cross-calibration uncertainty

Gamma 2022 | Marc Klinger | Probing the multiwavelength emission scenario of GRB 190114C

References:

1. MAGIC Collaboration et al., Nature 575, 459-463 (2019) 2. Klinger et al. 2022, submitted to APJL, arXiv: 2206.11148

and Donggeun Tak, Andrew M. Taylor, Sylvia J. Zhu

Fireball model: Long GRB

core collapse

massive star

 \rightarrow remnant

all images from DESY, Science Communication Lab

DESY. Gamma 2022 Marc Klinger Probing the multiwavelength emission scenario of GRB 190114C

compact object

relativistic jet **(**Γ ~ 100**)**

particles cool

 \rightarrow quasi-steady state electron spectrum

Homogeneous shell of electrons/positrons and photons

synchrotron self-Compton (SSC)

photons escape

turbulent magnetic fields (ε_B)

elativistic shock

Counts level fitting: \rightarrow first time bin 67.71-110s

absorption

instrument response

see https://github.com/threeML/threeML

Background rate

Bayesian approach

- $\rightarrow posterior = \frac{likelihood}{evidence} \cdot prior$
- \rightarrow (sometimes log) uniform priors
- \rightarrow evidence: $Z = \int d\vec{\theta} \ likelihood \cdot prior$ $(\rightarrow$ likelihood averaged over parameter space weighted with priors)

detect multiple maxima? \rightarrow

model comparison via Bayes factor

- quantitative way of measuring preference of model 1 over model 2 \rightarrow
- metric scale crucial \rightarrow

HELMHOLTZ WEIZMANN RESEARCH SCHOOL

- sample posterior (\rightarrow UltraNest: https://johannesbuchner.github.io/UltraNest/)

Gamma 2022 | Marc Klinger | Probing the multiwavelength emission scenario of GRB 190114C