An Off-axis Jet Model for Multi-wavelength Afterglow Emission of GRB 190829A detected by H.E.S.S.

Yuri Sato

First year Ph.D. Student, Aoyama Gakuin University

yuris@phys.aoyama.ac.jp

Co-authors: K. Obayashi, R. Yamazaki (AGU), K. Murase (Penn State), Y. Ohira (U. Tokyo), S.J. Tanaka (AGU)

Ref.: Y. Sato et al. 2021, MNRAS, 504, 5647-5655

VHE Gamma-ray Afterglows

Multi-wavelength light curve of GRB 190114C (MAGIC collaboration 2019).

Credit : Daniel Lopez (IAC)

VHE gamma-rays from some GRBs were detected by MAGIC and H.E.S.S. (GRB 180720B, 190114C, 190829A, 201216C).

It is expected that the number of events will increase in CTA era.

GRB 190829A: Afterglow

Model Description of Afterglow

 A relativistic jet interacts with ISM, forming external shock, radiating synchrotron emission in X-ray, optical(V-band) and radio bands(1.3 and 15.5 GHz) by accelerated electrons.

 We determined model parameters (shown below) to explain X-ray, optical and radio afterglows.

parameters of the present model		
θ_v	Viewing angle	
θ_0	Initial jet opening half-angle	
Γ_0	Initial Lorentz factor	
E_K	Initial isotropic-equivalent kinetic energy	
n_0	ISM density (uniform)	
p	Electron power-law(PL) index	
ϵ_e	The energy fractions of internal energy going into PL electrons	
ε_B	The energy fractions of internal energy going into magnetic field	
f_e	The number fraction of accelerated electrons	

Prompt Emission Properties of Narrow Jet

We discuss whether $E_{\rm iso}$ and $E_{\rm peak}$ from our narrow jet (Γ_0 =350) were typical or not if it would have been viewed on-axis ($\theta_v\approx$ 0). (Donaghy 2006, loka & Nakamura 2001)

If the narrow jet emitted Episode 1 and 2 of observed prompt emission, on-axis quantities are similar to typical long GRBs. It is uncertain whether the narrow jet causes both Episodes 1 and 2.

VHE GRB 190829A

Features of GRB 190829A H.E.S.S. detection with \sim 20 σ at about 2×10^4 s. Low redshift of z=0.0785. (ex; GRB 180720B: z=0.654, GRB 190114C: z=0.425) Prompt emission (2 episodes): smaller E_{iso} and E_{peak} than typical long GRBs.

Early X-ray and optical/IR afterglow : rising part and achromatic peak at about 2×10^3 s.

We consider off-axis jet model to explain those unusual observed properties of GRB 190829A.

X-ray/optical Bumps at 2×10^3 s

Theoretical models of bumps at $2{ imes}10^3$ s			
An X-ray flare	Chand et al. 2020, BT Zhang et al. 2021		
Baryon loaded outflow	Fraija et al. 2020		
e^+e^- dust shell	LL Zhang et al. 2021		
Reverse shock	Salafia et al. 2021, Dichiara et al. 2022		
Off-axis afterglow	This work (Sato et al. 2021)		

Off-axis Afterglow Emission from

the observational results of early X-ray and optical afterglow.

Jaw Observational Data

Our model parameters determined by X-ray, optical and radio afterglows may roughly explain new observations. VHE gamma-ray flux is consistent with SSC from large energy jet.

GRB 190829A: Prompt Emission

GRB 190829A has smaller $E_{\rm iso}$ and $E_{\rm peak}$ than typical long GRBs and the other VHE gamma-ray events.

Off-axis Jet Model

- If the jet is viewed off-axis $(\theta_v>\theta_j)$, the relativistic beaming effects cause the prompt emission to be dimmer and softer than on-axis $(\theta_v\approx 0)$ viewing case.
- The bulk Lorentz factor of the jet is initially so high that the afterglow emission is very dim because of the relativistic effect.
- · As the jet decelerates, the beaming effect becomes weak,
- resulting in the emergence of a rising part in afterglow light curves.
- After the peak of the emission, the jet has smaller Lorentz factors so that the light curve only weakly depends on the viewing angle.

Two-component Jet Model

The optical observation is brighter than our result later than 5×10^4 s \rightarrow SN component (Hu et al. 2021).

Conclusion

The early X-ray and optical afterglow of GRB 190829A could be off-axis emission from the narrow jet.

The late X-ray and radio afterglow came from the wide jet.

Our parameter may also explain VHE gamma-ray and and radio flux and radio size observation.

Some low-luminosity GRBs may be explained by off-axis jet model ??