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1. ABSTRACT
Relativistic shocks propagating in perfectly conductive plas-
mas have been extensively studied due to their central role
in high energy astrophysical phenomena, with Gamma-Ray
Bursts being the most prominent example. In the present
work, assuming a finite electrical conductivity for the prop-
agation medium and a finite length for the shock front, we
investigate the mechanism by which a relativistic shock in-
teracts with the propagation medium’s electromagnetic field.
These two assumptions necessitate the inclusion of one more
jump condition derived through the covariant Gauss-Ampère
Law and introduce a dimensionless parameter dependent on
the magnetic diffusivity of the plasma in the shock front, the
shock front’s length, as well as on the shock’s propagation
four-velocity. We investigate the effects of this parameter’s
value on shock dynamics and discuss possible applications
of this model in the study of Gamma-Ray Bursts.
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2. INTRODUCTION

The jump conditions for relativistic shocks propagating in
electrically conductive media are derived by projecting the
particle number four-current Nµ, energy-momentum tensor
Tµν , electromagnetic tensor Fµν and its Hodge dual ∗Fµν on
a spacelike four-vector Sµ perpendicular to the timelike shock
hypersurface in Minkowski space [1]. These covariant rela-
tions are:

• [Nµ]Sµ = 0 (1)

• [Tµν ]Sν = 0 (2)

• [∗Fµν ]Sµ = 0 (3)

• [Fµν ]Sµ +
4πLsh

c
J̃ν = 0 (4)

where [Q] = Q2 − Q1, with the subscripts 1 and 2 denoting
the propagation and shocked media respectively. In order to
study the effects of the shock front plasma’s finite electrical
conductivity on the properties of the shocked medium, one
needs to assume that the shock front is a hypervolume of fi-
nite length Lsh along the shock normal Sµ, instead of a hy-
persurface normal to Sµ. J̃ν then is average four-current over

Lsh, defined as:

• J̃ν = ξ (Jν
1 + Jν

2 ) (5)

with ξ of order unity. The four-current is determined by the
special relativistic generalization of Ohm’s Law:

• Jµ + Jν
UνUµ

c2
=

σ

c
FµνUν (6)

where Uµ is the medium’s bulk four-velocity.
The jump conditions are solved numerically, assuming the
Taub-Matthews Equation of State [2]:

• ρhc2 =
5

2
P +

√
9

4
P 2 + ρ2c4 (7)

with ρ, h, P the plasma’s rest mass density, specific enthalpy
and thermal pressure respectively.
The following field configuration is assumed, in the propaga-
tion medium’s frame:

• β2 = β2x̂,E2 = E2ŷ,B1,2 = B1,2ẑ (8)

All other field components are taken to be equal to zero.

3. RESULTS

The 3+1 decomposition of Eqs. 1-4 reveals that the properties
of the shocked medium are determined by a dimensionless
parameter:

• α =
ξ

κ

cΓ̃2
shβ̃shL̃sh

η
(9)

with κ of order unity, as determined through the relation:

• Γ̃2
shβ̃sh = κΓsh,2βsh,2 (10)

where Γsh,2βsh,2 is the four-velocity of the shock front in the
shocked medium’s frame. Γ̃shβ̃sh, L̃sh are the shock front’s
propagation four-velocity and length, as measured in the
frame of the plasma inside the shock front, and η the mag-
netic diffusivity of the plasma in the shock front’s volume. As
the value of α increases, the solutions to the jump conditions
1-4 approach those to the Ideal MHD jump conditions [3], [4].
For α ≪ 1 the medium’s electromagnetic field is unaffected
by the shock, while its hydrodynamic quantities satisfy the
hydrodynamic jump conditions.
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Figure 1: The shocked medium’s Lorentz factor γ2, thermal pressure
P2, magnetic field B2, and comoving electric field Eco

2 for Γsh = 100.

B is defined as
B2

1

8πρ1c2
.

The units used are: [P2] =
[
ρ1c

2
]
, [B2] =

[√
8πρ1c2

]
.

5. FUTURE RESEARCH
The present analysis expands the parameter space of rela-
tivistic shock propagation in magnetized media, shedding
light on the as of yet largely uninvestigated dynamics of rel-
ativistic shock propagation in plasmas with a finite electrical
conductivity and paves the way for future applications in the
study of GRBs. In future works the forward-shock-reverse
shock problem is considered, through which the conditions
inside the blastwave as well as its evolution are determined,
in the spirit of [5].
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4. CONCLUSIONS

101 102 103

Γsh

102

103

104

105

106

P
to
ta
l

10−2

10−1

100

101

102

α

Figure 2: Total pressure generated by the shock for a propagation
medium with B = 1.

• The jump conditions for relativistic shocks are supple-
mented with a new covariant relation derived through
the Gauss-Ampère Law. The properties of the shocked
medium are fully determined by the value of the di-
mensionless parameter α (Eq. 9).

• The value of α strongly affects the shocked medium.
The results presented demonstrate that as α increases,
the degree to which the medium’s EM field is affected
by the shock also increases. For α ≫ 1 the Ideal MHD
jump conditions are retrieved.
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