

Pedro de la Torre Luque pedro.delatorreluque@fysik.su.se Gamma2022 04/07/2022

Galactic diffuse gamma rays meet the PeV frontier

ArXiv: 2203.15759 In collaboration with D. Gaggero, D. Grasso, O. Fornieri, C. Evoli, K. Egberts, C. Steppa

Diffuse emission totally correlated The Gamma-ray diffuse sky with the propagation of cosmic rays Dominated by protons, He (and e⁻) Bremsstrahlung emission - 120 GeV $e + N \rightarrow e' + \gamma' + N$ ermi Gamma-ray Space Telescope -34.7448 J [cm⁻²s⁻¹GeV⁻¹sr⁻¹] -25.9217 $p + p \rightarrow \pi^0$ $\pi^0 \rightarrow 2 \gamma$ $e + \gamma \rightarrow e' + \gamma'$ IC emission - 120 GeV Hadronic emission - 120 GeV Hadronic (and Bremss.) emission follows the ISM gas distribution IC emission depends on the energy density of the ISRFs

-29.178

[cm⁻²s⁻¹GeV⁻¹sr⁻¹]

-18.8142

2

-25.313

I [cm⁻²s⁻¹GeV⁻¹sr⁻¹]

-29.5262

Galactic gamma-ray diffuse emission – Local cosmic rays

10⁵

P.D.L. et al arXiv:2202.03559

н

Too limited information on Galactic CR propagation to build theoretical models beyond the Solar System

10³

Galactic gamma-ray diffuse emission – Local cosmic rays

Galactic gamma-ray diffuse emission – Local cosmic rays

Galactic gamma-ray diffuse emission – Hardening towards the centre

Progressive hardening of the gamma-ray diffuse spectrum towards the centre

Diffuse gamma-ray spectrum essentially follows the spectrum of CR protons:

Purely diffusive $-\phi \propto E^{-(\alpha+\delta)}$ Advection dominated $-\phi \propto E^{-\alpha}$

Transient effects and source injection not isotropic (α (r, z))

The conventional picture of **spatially-constant diffusion is not able to explain this** consistently

1.96936e-22 J [cm⁻²s⁻¹GeV⁻¹sr⁻¹] 1.96936e-18

Base model: Constant ($\delta_A = 0$) **γ-optimized** model: $\delta_A = 0.04$ $\delta_0 = 0.17$

Inhomogeneous diffusion model ($\delta \rightarrow \delta(R)$)

Two different interpretations (models) of the local proton and He data based on the "bump" at ~10 TeV found by DAMPE and the discrepancy from particle shower experiments.

<u>MAX model</u> adopted connects AMS-02 data with IceTop

<u>*MIN model*</u> adopted connects the DAMPE "bump" with KASCADE

Both models incorporate a break at ~ 300 GeV and a strong softening (cut-off) at a few PeV

Different interpretations of local data Local sources vs global features

Inhomogeneous diffusion model ($\delta \rightarrow \delta(R)$)

Two different interpretations (models) of the local proton and He data based on the "bump" at ~10 TeV found by DAMPE and the discrepancy from particle shower experiments.

<u>MAX model</u> adopted connects AMS-02 data with IceTop

<u>*MIN model*</u> adopted connects the DAMPE "bump" with KASCADE

Both models incorporate a break at ~ 300 GeV and a strong softening (cut-off) at a few PeV

Different interpretations of local data Local sources vs global features

Inhomogeneous diffusion model – The different components

- The diffuse emission at GeV energies dominate over the emission sources emission (4FGL catalogue)
- Unresolved point sources (UPS) become more important at higher energies (Steppa+ A&A 643, A137 (2020))
- Isotropic gamma-ray background (IGB) contains Extra-galactic plus Fermi's instrumental background

Inhomogeneous diffusion model The diffuse emission meets TeV data

P.D.L. et al arXiv: 2203.15759

The spatially-dependent (γ-optimized) models, tuned on Fermi-LAT data are also favoured by very high energy detectors like LHAASO

Important implications for future experiments like CTA and for dedicated studies of the Galactic Centre (GeV excess)

Inhomogeneous diffusion model

The diffuse emission meets TeV data

Both models under-produce TIBET data → Region very affected by the emission of unresolved sources! (dependent on the experiment)

The effect of the inhomogeneous transport in such externals regions is small, therefore, more data at these ROIs can help solving the degeneracy on the injection spectra (MAX/MIN)

> See also: Vecchiotti et al *ArXiv*:2107.14584 Linden and Buckman *PRL* 120, 121101 (2018)

Diffuse gamma-ray production: detection of <u>neutrinos</u> as a smoking gun

Neutrinos are also generated by CR collisions with ISM. This emission is similar in intensity and spectral shape to the gamma-ray emission

 2σ hint observed by IceCube (Aartsen, et al. 2019, Astrop. J., 886, 12). <u>Observation of</u> <u>Galactic neutrinos could be very close</u>

Work in progress for the evaluation of the Galactic neutrino flux from the γ -optimized model

TO CONCLUDE...

- Gamma rays offer crucial information about the propagation of cosmic rays in different zones of the Galaxy, although many ingredients are involved...
- A formal study of the generation of turbulence (and its evolution) in different zones of the Galaxy is necessary
- Precise predictions of unresolved sources and TeV halos would help us improve our models. Neutrinos could allow us to solve the puzzle

14

BACK UP

The Galactic Gamma ray emission - Components

- > 5600 point-like sources have been observed by the Fermi satellite
- \geq ~ 75 extended sources

Extended structures (Fermi bubbles, Loop I, ...)

Galactic diffuse gammaray background

Extragalactic background (EBL) is <u>isotropic</u>

Acceleration of CRs in sources

Diffusive shock acceleration explains the power law distribution of CR particles

CRs are accelerated in shocks - Like those found in SNRs or PWNe

Then, these cosmic rays interact with their surroundings and generate gamma rays

The **Milky Way** is described as a magnetised plasma medium following the Magnetohydrodynamic equations

$$B = B_0 + \delta B \rightarrow \langle B \rangle = B_0$$

$$E = 0 + \delta E \rightarrow \langle E \rangle = 0$$

Longitudinal modes are compressional waves which are severely damped by the gas

Alfven waves are circularly polarized whose resonant interaction governs the CR scattering

Secondary-to-primary CR flux ratios allow us to constrain the properties of the plasma where the turbulence is generated

CRs trigger instabilities in the plasma that lead to further confinement of cosmic rays in the Galaxy

3/C Flux ratio

$$\frac{\partial}{\partial k} \left[D_{kk} \frac{\partial W}{\partial k} \right] + \Gamma_{\rm CR} W = q_W(k).$$

Diffusive transport of Galactic cosmic rays

Propagation equation is solved with the DRAGON2 code https://github.com/cosmicrays/DRAGON2-Beta version

 $\frac{J_{\text{sec}}}{J_{\text{max}}} \sim \sigma(E) / D(E)$

 $D = D_0 \beta^{\eta} \left(\frac{\kappa}{R_0}\right) F(\vec{r}, z)$

Confinement time \rightarrow Diffusive transport

CR observed flux: $N \propto E^{-\gamma}$; $\gamma \sim 2.7$

DSA predicted flux: Q \propto E^{- α} ; α ~ 2-2.3

$$\frac{dN_i}{dt} = Q_i(E) - \frac{N_i}{\tau^{esc}} \quad \text{(Leaky box approx.)}$$

Steady solution $N_i = Q_i \tau^{esc}$ ——— Confinement time must be: $\tau^{esc} \propto E^{-\delta}$; $\delta \sim 0.4$

Solving the equation
$$\ rac{dec{p}}{dt} = q rac{ec{v} imes (ec{B} + \delta ec{B})}{c}$$
 leads to $\delta \propto (\delta B/B)^2 \propto k^{-\lambda}$

The <u>power spectrum of MHD turbulence</u> follow a power law in wavenumber (k) and is able to explain the propagation of CRs as a diffusive transport in the Galaxy with $0.3 < \delta < 0.6$

The Gamma-ray sky – Components: Diffuse

There are still extended (diffuse) emissions there:

Fermi bubbles Loops and spurs

Below these foregrounds we find the diffuse gamma-ray sky!

Extragalactic background (EBL) is <u>isotropic</u>!

See https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

The Gamma-ray sky – Components: Diffuse

Diffuse gamma-ray sky has many components (different emission mechanisms) adding up on top of each other – Hadronic emission is the dominant one above ~ hundreds MeV

This diffuse emission is correlated with the propagation of cosmic rays in the galaxy! Dominated by protons, He (and e⁻)

Galactic gamma-ray diffuse emissivity – From standard models

Main uncertainties in the IGRB

- CR propagation ingredients
- o Gas distributions: XCO map factor
- Source distributions
- Unresolved sources
- Extra-galactic background is uncertain at the level of ~30%
- Fermi Bubbles
- o <u>Cosmic-ray gradient problem</u>

P.D.L. PhD thesis (2021) ArXiv:2202.07063

Galactic gamma-ray diffuse emission – Hardening towards the centre

Progressive hardening of the gamma-ray diffuse spectrum towards the centre

Diffuse gamma-ray spectrum essentially follows the spectrum of CR protons:

Purely diffusive – $\mathbf{\Phi} \propto E^{-(\alpha + \delta)}$

Advection dominated – $\mathbf{\Phi} \propto E^{-\alpha}$

Transient effects and source injection not isotropic (α (r, z))

Average gamma-ray emission - Gal. Plane - XCO Dragon

Galactic gamma-ray diffuse emission – Hardening towards the centre

Progressive hardening of the gamma-ray diffuse spectrum towards the centre

Diffuse gamma-ray spectrum essentially follows the spectrum of CR protons:

Purely diffusive $-\phi \propto E^{-(\alpha + \delta)}$ Advection dominated $-\phi \propto E^{-\alpha}$

Transient effects and source injection not isotropic (α (r, z))

Average gamma-ray emission - Gal. Plane - XCO Dragon

Galactic gamma-ray diffuse emission – Hardening towards the centre

Progressive hardening of the gamma-ray diffuse spectrum towards the centre

Diffuse gamma-ray spectrum essentially follows the spectrum of CR protons:

Purely diffusive $- \mathbf{\phi} \propto E^{-(\alpha + \delta)}$ Advection dominated $- \mathbf{\phi} \propto E^{-\alpha}$

Role of unresolved

sources?

Average gamma-ray emission - Gal. Plane - XCO Dragon

Inhomogeneous diffusion model ($\delta \rightarrow \delta(R)$)

Many reasons to believe that the turbulence is progressively different towards the Galactic centre:

- Magnetic field intensity (and direction)

- Gas distribution (contributing to damping of MHD waves)

- Distribution of sources

- Anisotropy of turbulence cascade
- Non-steady particle distribution?

Inhomogeneous diffusion model ($\delta \rightarrow \delta(R)$)

Many reasons to believe that the turbulence is progressively different towards the Galactic centre:

- Magnetic field intensity (and direction)

- Gas distribution (contributing to damping of MHD waves)

- Distribution of sources
- Anisotropy of turbulence cascade
- Non-steady particle distribution?

B/C spectrum from the γ-optimized model

γ-optimized model vs Fermi

ISM gas distribution based on the ring gas model developed by Q. Remy

ISRF distribution (CMB + IR + Stellar) from Vernetto&Lipari Phys. Rev. D 94, 063009

XCO factor divided in rings to tune the normalization (main caveat!!)

Latitude profile - 10 < |/| < 40 deg - 100 GeV

Inhomogeneous diffusion model ($\delta \rightarrow \delta(R)$)

Different interpretations of local data... Local sources vs global features

Inhomogeneous diffusion model ($\delta \rightarrow \delta(R)$)

Different interpretations of local data... Local sources vs global features

MAX and MIN models allow us to have an idea of the uncertainties on the local CR spectra of protons and helium at different energies, but <u>they do not</u> <u>represent the full</u> <u>uncertainty involved !!</u>

Inhomogeneous diffusion model

The diffuse emission meets TeV data

Absorption from the CMB dominates over the other ISRFs (IR from dust, Optic and UV from stars and extra-galactic background light)

MAX/MIN + Unresolved emission vs HAWC data

MAX/MIN + Unresolved emission vs TIBET data

Inhomogeneous diffusion model

The diffuse emission meets TeV data

LHAASO

Within the **region of sensitivity of IceTop** there is little difference between models conventional diffusion and the gammaoptimized models

Observations in this region seem to be **around the corner**! In addition, unresolved sources may play a crucial role here

The role of unresolved sources

Vecchiotti et al (2021), ArXiv:2107.14584v1

"Unresolved source contribution is not negligible for E > 1 TeV and becomes progressively more relevant as energy increases. This is a natural consequence of the fact that sources are expected to have, on average, harder spectrum than CR diffuse emission."

TeV halos and inhibited diffusion of leptons around Pulsar Wind Nebulae (PWNe)

Probably similar inhibited diffusion is present around every source injecting CRs ...

Semenov, Krtavsov, Caprioli 2021

Is this really important?

- Injection mechanism and acceleration of CRs (PeVatrons?)
- Environments of PWNe and SNRs as well as the mechanism of turbulence generation and propagation, ...
- Astrophysical plasmas, magnetic fields, ionization rates in MCs, ...
- Galaxy formation 4
- GeV excess?

