

The most complete multi-wavelength view of M87 to date: the 2017 campaign

A. Hahn (Max Planck Institute for Physics) for the EHT-MWL Working Group, EHT Coll., Fermi-LAT Coll., H.E.S.S. Coll., MAGIC Coll., VERITAS Coll., EAVN Coll.

Alexander Hahn

Alexander Hahn

H.E.S.S.

MAGIC

VERITAS

•

MAX-PLANCK-INSTITUT

3.5

0.5

-0.

..5'

2

1.5 1 0.5

-0.5

2.5

1.5

0.5

-0.5 -40

-30

-20

Abramowski et al. 2012; Integral fluxes E > 350 GeV

-10

0

Time (days)

2

 $\Phi_{V\!H\!E}$ (10^{-11} cm $^{-2}$ s $^{-1}$)

 $\Phi_{V\!H\!E}$ (10^{-11} cm $^{-2}$ s $^{-1}$)

 $\Phi_{V\!H\!E}$ (10^{-11} cm^{-2} s $^{-1}$)

M87 at VHE gammas in the past

2005

6

2008

2010

30

10

20

• 2005: TeV detection during increased X-ray and near-UV (HST) flux of HST-1

• 2008: TeV detection during X-ray core high flux, HST-1 low flux, start of increasing radio flux

• 2010: TeV detection with flux doubling time scale about 1 day, no increased radio flux at 43 GHz, but new radio blob appearing in HST-1, X-ray core bright

Alexander Hahn

40

EHT-MWL 2017 campaign

- Purpose
 - Provide quasi-simulataneous MWL data
 - Combine EHT and MWL data to study SMBH vicinity in more detail
 - Serve as input for theoretical models of SMBHs and jets

- MWL campaign on M87 2017:
 - Extensive, quasi-simultaneous
 - covering more than 15 decades in energy
 - 19 different facilities
 - Largest MWL campaign to observe a black hole
 - EHT collaboration et al., ApJ 911, L11 (2021)
 - 760 authors from 32 countries

Alexander Hahn

UV

2015.0

Radio

Historically low state in 2017 •

Insight into jet structure through variability •

Optical

VHE

EHT-MWL 2017 images

- Resolved structures from radio to X-rays
- Straight, highly collimated jet
- Limb brightening, parabolic collimation profile
- Southern jet limb brighter than northern
- VLBA and GMVA: inner jet significantly offset from large scale jet (long-term periodic oscillations, Walker et al. 2018a)
- Core shift between 22 and 43 GHz Spectral index map show typical AGN jet (flat-spectrum radio core which progressively becomes optically thin)
- No component ejection detected

Image Credit: The EHT Multi-Wavelength Science Working Group; the EHT Collaboration; ALMA (ESO/NAOJ/NRAO); the EVN; the EAVN Collaboration; VLBA (NRAO); the GMVA; the Hubble Space Telescope, the Neil Gehrels Swift Observatory; the Chandra X-ray Observatory; the Nuclear Spectroscopic Telescope Array; the Fermi-LAT Collaboration; the H.E.S.S. collaboration; the MAGIC collaboration; the VERITAS collaboration; NASA and ESA. Composition by J.C. Algaba.

- MWL SED of the M87 core (in quiescent state)
- Near simultaneous data
- Spatial resolution of instruments ranging 20 µas – 2°

EHT MWL 2017 single-zone models

Model 1:

- **EHT oriented models** • (hard constrain on emission region size)
- $\delta = 1$, bulk motion of emission region has likely not yet reached relativistic speed
 - **1a)** PL w/ rad. cooling (Kino) = - uses parameters from MAGIC+20
 - **1b)** broken PL w/o rad. cooling (Kawashima)
 - does not well reproduce X-ray shape
 - Main difference in IR
- X-ray only by synchrotron ۰
- Problematic in y-rays
- GeV, TeV from more extended region

Model

model 1a

model 1b

 $L_i [L_{\rm Edd}]^a$

 6×10^{-3}

 4.7×10^{-3}

Alexander Hahn

5.0

 $R[r_g]^b$

5.6

5.2

1.6

3.8

EHT MWL 2017 single-zone models

Model 2 - VHE oriented model:

- Assume a sphere, radius R moving with bulk Lorentz factor Γ_j . Power divided between rel. electrons, non-rel. protons and a global magnetic field.
- Assume one cold proton per electron (no positrons), and that the eDF is described by a power-law with slope p_2 between Lorentz factors γ_{min} and γ_{max} .
- Assign the index to p_2 to allow better comparison to model 1b, as our steeper distribution is likely in the radiatively cooled regime, although we do not calculate γ_{br} explicitly.
- Modeling of X-ray emission in detector space to disentangle various jet and ICM components
- Without the strong EHT size constraint (1a/1b), model parameters are highly degenerate.
- Model 2 cannot fit the radio-mm VLBI core nor the VHE emission especially in the GeV range

Model	$L_j \; [L_{ m Edd}]^{a}$	δ	$R [r_g]^b$	$n_{ m e}' [{ m cm}^{-3}]$ C	B' [G]	$\gamma_{ m min}$	$\gamma_{ m br}$	$\gamma_{ m max}$	p_1	p_2	$U_{\rm e}/U_{\rm B}$
model 1a	6×10^{-3}	1	5.6	3.6×10^5	4.7	1	—	3.5×10^6	2.2	—	2.3
model 1b	4.7×10^{-3}	1	5.2	$8.0 imes 10^5$	5.0	1	1×10^4	$2 imes 10^6$	2.7	3.8	1.6
model 2	$2.8^{+2.0}_{-1.4} \times 10^{-5}$	3.3	626^{+256}_{-301}	$9.5^{+7.5}_{-7.8} \times 10^{-3}$	$1.5^{+1.6}_{-0.9} \times 10^{-3}$	$4.1^{+2.1}_{-1.5} \times 10^3$	_	$6.4^{+2.6}_{-3.6} \times 10^{7} d$	_	$3.03\substack{+0.03 \\ -0.05}$	635_{-288}^{+465}

- Single-zone models fail to explain the M87 broadband SED
- Models 1a/b
 - EHT-mm and X-ray flux explained by mildly magnetically dominated sphere, but fails at gamma rays
 - In a ~5 G magnetic filed the synchrotron cooling time for X-ray producing electrons is
 ~30 s, which is in tension with the moderate X-ray variability
- Model 2
 - Particle-dominated larger zone describes X-rays well, but fails to fit radio and GeV emission
- Conclusion: structured jet model necessary to explain 2017 MWL observations

Concluding remarks

- Conclusion: structured jet model necessary to explain 2017 MWL observations
- Moderate magnetically dominated at jet base where EHT and possibly part of X-rays are produced
- Particle dominated, larger region further downstream seems necessary to explain gamma-ray emission
 - Either region not in the accelerating part of jet flow, or interacting with surrounding ICM
 - Might require additional seed photons than jet emission alone
- VHE emission also possible from even further downstream, from knots outwards of HST-1
 - Not covered by our radio and X-ray data but unresolved in gamma rays.
- Data available DOI:10.25739/mhh2-cw46
- Variability provides the key to test different scenarios
- Similar MWL campaigns performed in the following years
 ⇒ stay tuned for EHT MWL data from 2018 !

Thank you

- Flat-spectrum radio core indicating presence of synchrotron self-absorbed component
- Extended regions become gradually optically thin. Typical for AGN jets

- Two 17 m diameter Imaging Atmospheric Cherenkov Telescopes
- Canary island of La Palma at 2200 m a.s.l.
- MAGIC-I: since 2004
- MAGIC-II: since 2009
- 2012 major upgrade of readout and MAGIC-I camera
- Energy range ~50 GeV ~50 TeV

