

7th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy Barcelona, July 4-8 2022

INTRODUCTION

- Heavy quark contents in extensive air showers (EAS) of ultra-high energy cosmic ray (UHECRs) primaries can contribute more to the shower profile at detector level.
- Previous studies ^[1] on the EAS simulations for heavy quarks like charmed mesons or D-mesons have shown change of shower profile due to charged and neutral D-mesons decay to muons,

CORSIKA SIMULATION

- CORSIKA (COsmic Ray Simulations for KAscade)^[2] is a detailed Monte Carlo program of the development of EAS in the atmosphere.
- CORSIKA 7.7410 package is used for the EAS simulation. SIBYLL2.3d^[3] and GHEISHA 2002d ^[4] models were used for high energy and low energy hadronic interactions respectively.

SIMULATION PARAMETERS

• The primary energy range is divided into six logarithmic bins with an interval of 0.2. Some input parameters of the simulation and events generated in each bin are as follows:

Parameter Name	Value	Energy bin (eV)	No. of Events
Primary Particle	Proton (14)	$10^{18} - 10^{18.2}$	100
Primary Energy	$10^{18} - 10^{19.2} \text{ eV}$	$10^{18.2} - 10^{18.4}$	46
Energy Slope	-2.7	$10^{18.4} - 10^{18.6}$	20
Zenith Angle	20°	$10^{18.6} - 10^{18.8}$	10
Observation Level	Sea Level	$10^{18.8} - 10^{19}$	4
First Interaction(From sea Level)	1 km	$10^{19} - 10^{19.2}$	2

D-MESONS DISTRIBUTION

CORSIKA Simulation for Massive Quarks in Hadronic Showers Bhanu Prakash Pant, Anil Kumar Pradhan, and Reetanjali Moharana **Department of Physics, Indian Institute of Technology Jodhpur, India**

electrons, photons and neutrinos.

- In this work, we study the influence of charmed mesons on the production of muons and electrons+photons using CORSIKA Monte Carlo simulation for the proton primaries within energy 10^{18} eV to $10^{19.2}$ eV. We also show the neutrino contents of the shower.
- Simulations were done in two ways as:
 - With charm production, selected the charmed option in the CORSIKA compile file.
 - Without charm production, remove the charmed option in the CORSIKA compile file and selected SIBCHM False in the input parameters file.

Email: pant.3@iitj.ac.in

NEUTRINOS DISTRIBUTION

SUMMARY & DISCUSSIONS

Using CORSIKA simulation, we studied the EAS contents specifically muons, electrons and photons for primary UHE protons considering production of D-mesons.	$ \nu_{ au} + \overline{ u} $ ON, t appea decay
From the simulation, we also found the neutrino contents for the EAS showers. With charmed meson OFF, we found the ratio $\nu_e + \bar{\nu_e} : \nu_\mu + \bar{\nu_\mu} :$	• For th GHEI use of

REFERENCES

[1]	P.W. Gaemers, <i>Charm particle production in High Energy Cosmic Ray Showers using CORSIKA</i> , PhD. thesis, Netherlands (2016).	[3] R.S Lip	. Fletcher, T.K. G ari, and T. Stanev	aisser, P. Li , Phys. Rev. 1	pari, and T. Stan D 46 (1992) 5013.	ev, Phys. Re	v. D50 (199	94) 5710; J. H	Engel, T.K. Ga	isser, P.
[2]	D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, T. Thouw, Report FZKA 6019, Forschungszentrum Karlsruhe(1998).	[4] H. htt	Fesefeldt, p://cds.cern.ch/r	Report ecord/16293	PITHA-85/02 11/files/CM-P00	(1985), 055931.pdf	RWTH	Aachen,	available	from:

 $\bar{\nu}_{\tau}$ as 1 : 23 : 0 where as for charmed meson the ratio becomes $1 : 23 : 1.6 \times 10^{-4}$. The arance of ν_{τ} is due to the 5% branching ratio mode of D_s mesons.

ne above study, we used the SIBYLL2.3d and ISHA 2002d models. In the future, we will ther models to have a check on the results.