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Why do we revisit?
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Magnetized limit

For acceleration to proceed, ‘%\\ X\

the isotropization rate in
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Code

Monte-Carlo simulation to calculate particle trajectory
Regular magnetic field (jump condition when crossing the shock)
Small angle scattering
Particle splitting method

Energy losses
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Perpendicular case

Scattering rates in upstream and downstream are both proportional to y*-2,

as expected for particle scattering in small scale fluctuations
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Magnetized limit in downstream

downstream upstream
Bd
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Perpendicular case
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Magnetized limit in upstream

downstream upstream
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How can these particles return back to upstream?
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Date of talk

Particle trajectory
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t=to

When moving to upstream (t=t1)
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Conditions
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When moving to downstream (t=t0)
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Phase distribution

Red: condition A

Green: condition B

Blue: particle phases

Phase distribution is not uniform!
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Oblique case
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0: declination angle with
shock normal (>> 1/ys)
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Role of large scale fields

Consider the existence of a large-scale magnetic field,

vy = D172 + Dyy™/?

small scale large scale

-1
Wgyro X 7

It is possible that particles are always unmagnetized in upstream. External
turbulence in progenitor’s environment might be sufficient to provide the
necessary upstream scattering at large energies.



Conclusions

e Scattering in upstream is also important for shock acceleration.
* The magnetized limit in downstream is a weak condition.

 The maximum accelerated energy can exceed the magnetized limit in
downstream, and may reach the Bohm limit.
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Thank you!
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