High-energy neutrinos and gamma rays from winds and tori in active galactic nuclei Role of failed winds, wind-torus interaction Susumu Inoue (Bunkyo U./RIKEN) Matteo Cerruti (APC), Kohta Murase (PSU/YITP), Ruo-Yu Liu (Nanjing U)

arXiv: 2207.02097, submission to PRL imminent





### NGC 1068: Seyfert 2 with wind + obscuring torus



# neutrinos and gamma rays from NGC 1068



- neutrinos: IceCube Col.1910.08488  $3\sigma$  excess from 2 independent methods, more results coming
- soft, TeV-range spectrum,  $\nu L_{\nu} \sim 10^{42}$  erg/s ( $\epsilon_{\nu}/1$  TeV)<sup>-3.2</sup>
- GeV γ: exceeds starburst expectation -> AGN origin? Yoast-Hull+ 14, Eichmann & Becker Tjus 16

TeV  $\gamma$ : upper limits rule out low  $\tau_{\gamma\gamma}$  environments MAGIC Col. 19

# neutrino + gamma from NGC 1068: AGN origin?

AGN wind kpc-scale ext. shock? -> ruled out by TeV upper limits





issues:

- acceleration in corona robust?
- origin of GeV γ rays?
- cascade at <<MeV?</p>

# neutrino + gamma from NGC 1068: AGN origin?

AGN wind kpc-scale ext. shock? -> ruled out by TeV upper limits





issues:

- acceleration in corona robust?
- origin of GeV γ rays?
- cascade at <<MeV?</p>

- -> this study:
- shock accel. in winds
- inner  $p\gamma$  + outer pp
- evaluate down to radio 4

# line-driven winds: successful vs failed



c.f. CAK75

- high  $L_{UV}$  -> enhanced  $p_{rad}$  for metal line transitions -> outflow - high  $L_X$  ->

inner R: overionization,  $p_{rad}$  loss -> failed wind (v<v\_{esc}, fallback) outer R: shielding -> successful wind (v>v\_{esc}, mainly equatorial)

- failed winds expected for moderate/high M, inc. NGC 1068 -> X-ray obscurers, BLR, soft X excess? Giustini & Proga 19
- outflow + fallback -> shock formation? high P? Sim+ 10 5

## $p\gamma \nu + \gamma$ from inner regions of AGN winds



### **pγ v+γ from inner regions of AGN winds** inner failed winds -> "internal" shocks -> proton acceleration

![](_page_7_Figure_1.jpeg)

![](_page_8_Figure_0.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_11_Figure_0.jpeg)

![](_page_12_Figure_0.jpeg)

### inner region (failed wind): timescales

![](_page_13_Figure_1.jpeg)

### inner region (failed wind): timescales

![](_page_14_Figure_1.jpeg)

![](_page_15_Figure_0.jpeg)

prominent at (keV-)MeV -> for future instruments

### pp $\gamma(+\nu)$ from AGN wind+torus interaction

outer successful wind + torus impactc.f. García-Burillo+ 19-> external shock -> proton acceleration

![](_page_16_Figure_2.jpeg)

### pp $\gamma(+\nu)$ from AGN wind+torus interaction outer successful wind + torus impact c.f. García-Burillo+ 19 -> external shock -> proton acceleration $p_{CR}+p_{gas} \rightarrow N+\pi^0, \pi^{\pm} \pi^0 \rightarrow 2\gamma$ $\gamma_{\text{TeV}} + \gamma_{\text{IR}} \rightarrow e^+e^ \log(\frac{Z}{pc})$ NLR 3 Ionization cone 2 1 0 Polar Torus dust Outflow $\bigcirc$ -2 GeV γ BLR obs. Corona SMBH Disk 2 -2 0 $-\Delta$ $\log(\frac{r}{pc})$ 10 overlaid on Ramos Almeida+ 17

#### pp $\gamma(+\nu)$ from AGN wind+torus interaction outer successful wind + torus impact c.f. García-Burillo+ 19 -> external shock -> proton acceleration $p_{CR}+p_{gas}\rightarrow N+\pi^0, \pi^{\pm} \pi^0 \rightarrow 2\gamma$ $\gamma_{\text{TeV}} + \gamma_{\text{IR}} \rightarrow e^+e^ \log(\frac{Z}{DC})$ **NB:** primary electrons NLR not considered 3. Ionization cone 2 1 main parameters: $R_{o}, n_{o}, B_{o}, L_{p,o}$ dust Outflow $\bigcirc$ pp -2 GeV γ $\bigcirc$ 🗇 BLR $\bigcirc$ obs. $\bigcirc$ Corona assume $v_0 = 5000 \text{ km/s}, \eta_{g,0} = 10$ SMBH Disk 2 -1 -2 0 $\log(\frac{r}{pc})$ 10 overlaid on Ramos Almeida+

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

- inner region (failed wind) py: TeV v,  $\langle GeV cascade$ - outer region (wind-torus) pp:  $\rangle GeV \gamma$ , GHz radio

### summary

fact: AGN winds - fast, powerful, widespread, inc. NGC 1068

interpretation of  $v+\gamma$  emission from NGC 1068

- p accel. in inner regions near BH <- failed line-driven wind
- assuming v<<v<sub>esc</sub>, py neutrinos with soft TeV spectrum
- EM cascade  $\gamma\gamma$  attenuated >MeV but non-negligible <GeV
- p accel. in wind-torus interaction shock, pp at GeV  $\gamma$ , potentially radio -> to be explored

### future tests and prospects

- cascade MeV, MM variability: v,  $\langle GeV \gamma vs polarized opt/NIF$ 

WIND POWER

- other AGN (esp. unobscured) by IceCube-Gen2, CTA, etc
- contribution to diffuse v background
- unique info on AGN wind formation, esp. obscured objects

arXiv: **2207.02097** for submission to PRL

## **backup slides**

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

# importance of AGN winds

thermal, baryonic plasma; weakly collimated <-> rel. jets

1. Observed to exist, widespread (radio-quiet or radio-loud)

~<pc – blueshifted atomic absorption X-ray UFOs / UV BAL: v>~0.1c, L<sub>kin</sub>~<L<sub>Edd</sub>, M~<M<sub>edd</sub> X-ray WAs / UV NAL: v>~1000km/s ~<kpc – narrow emission line region (UV-IR): v>~1000km/s >~kpc – molecular emission (CO, OH, etc.): v~<1000 km/s, M~<100 M<sub>Θ</sub>/yr, L<sub>kin</sub>~<L<sub>bol</sub>

- 2. Plausibly expected from accretion disks via various mechanisms (unlike jets): thermal, radiative, magnetic...
- 3. Likely important for collimating jets in radio-loud objects
- 4. May provide mechanical/thermal feedback onto host gas-> observed BH scaling relations, star formation quenching
- 5. May be particle accelerators + nonthermal emitters weakly beamed, quasi-isotropic

![](_page_27_Figure_0.jpeg)

- consistent with observed AGN SEDs, wind signatures
- robust failed winds at inner R for moderate to high m: origin of BLR, X-ray obscurers (e.g. NGC 5548)?

### failed winds in inner regions of NGC 1068?

![](_page_28_Figure_1.jpeg)

### multi-messenger variability correlation 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 vr-timeso

![](_page_29_Figure_1.jpeg)

polarized optical-NIR: nuclear emission scattered into LOS

![](_page_29_Figure_3.jpeg)

also escaping hard X-rays

even better: unobscured Seyfert 1

### variability in unobscured Seyfert I with wind

![](_page_30_Figure_1.jpeg)

### **radio emission of radio-quiet AGN** origin? star formation, winds, "jets", disk coronae...

![](_page_31_Figure_1.jpeg)

### kpc-scale ("mini"-)jet in NGC 1068

![](_page_32_Figure_1.jpeg)

jet origin of protons? potential challenges:

- high velocity
- limited power

 $v_{iet}$ ~0.06c at ~60 pc likely higher at base Bicknell+ 08

"failed jet" with lower v, higher P near BH?: no support so far from theory or obs. <-> failed wind

### **Circinus galaxy: next candidate?**

![](_page_33_Figure_1.jpeg)