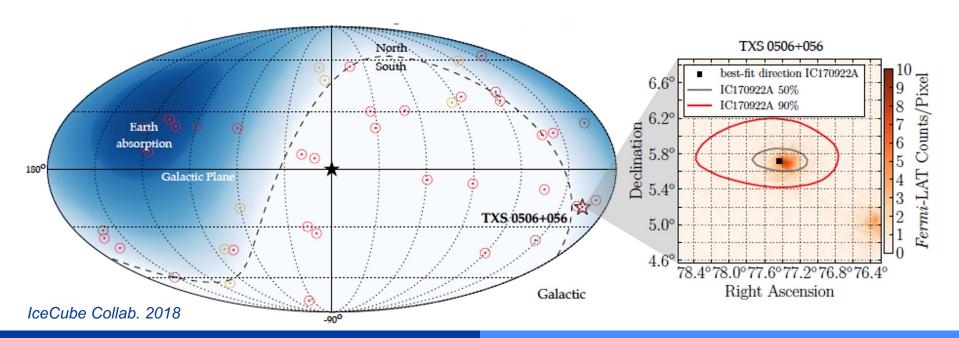


Ultrahigh-energy cosmic-ray induced gamma-ray and neutrino fluxes from blazars

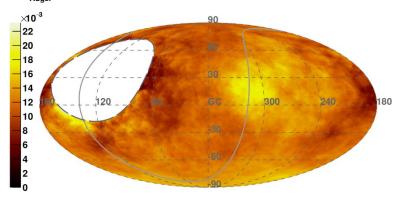
Soeb Razzaque | Centre for Astro-Particle Physics and Department of Physics, University of Johannesburg

srazzaque@uj.ac.za | https://www.uj.ac.za/faculties/science/capp

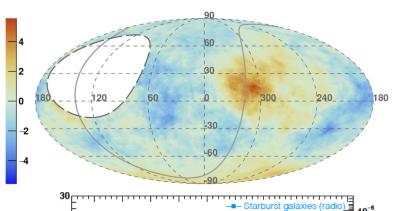

With Saikat Das and Nayantara Gupta

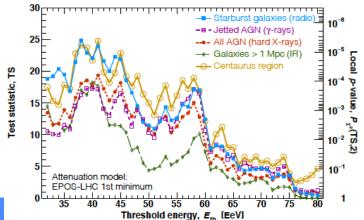
Plausible association of blazars and ν

- IC -170922A event detected from the direction of BL Lac TXS 0506+056 during flare in 2017
- Chance coincidence can be rejected at 3 sigma level



UHECR Sky




 $\Phi(E_{Auger} > 41 \text{ EeV}) \text{ [km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}] - \text{Galactic coordinates} - \Psi = 24^{\circ}$

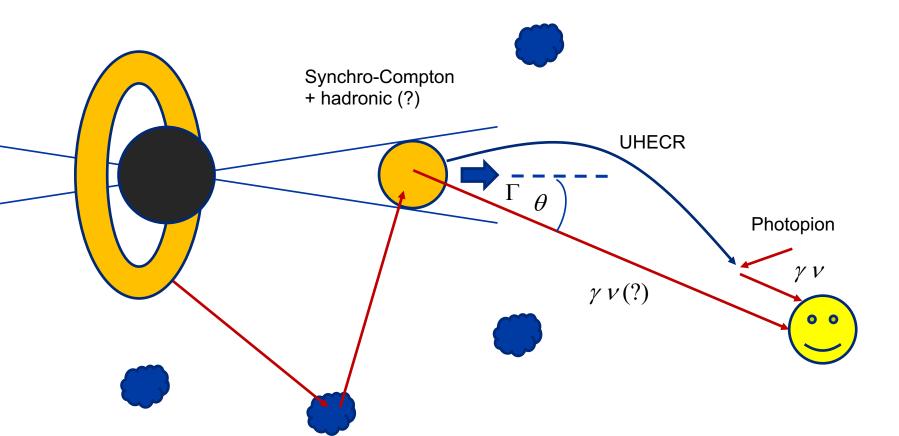
- Auger flux map with a top-hat smoothing function
- Auger pre-trial TS map of over-dense regions
- TS profile of association with source catalogs

Pre-trial Li & Ma $\sigma(E_{Auger} > 41 \; \text{EeV})$ - Galactic coordinates - Ψ = 24°

Motivation ...

- → Detection of PeV neutrinos from blazars implies acceleration of cosmic rays to ≥ 10 PeV
- → Blazars are plausible candidates for UHECRs, capable of accelerating particles to 10²⁰ eV
- → Escaping UHECRs from IceCube blazars can interact in the microwave, infrared, optical background field
- → Produce line of sight neutrinos and gamma rays, if the intervening magnetic field is low, $\leq 10^{-15}$ G

Detection can establish blazars as UHECR sources


Essey & Kusenko 2010 Essey, Kalashev, Kusenko & Beacom 2010 Razzaque, Dermer & Finke 2012 Kalashev, Kusenko & Essey 2013

Blazar emission scenario

Strategy ...

Select blazars with non-variable VHE emission.

UHECR contribution is relevant only for non-variable gamma-ray emission from blazars

Any variability in gamma rays from UHECRs will wash-out while propagation

Fit SEDs with single-zone leptonic SSC model + LoS gamma rays from UHECRs

Fit quiescent/steady-state spectrum

Check if gamma-rays from UHECRs improve fit to VHE data

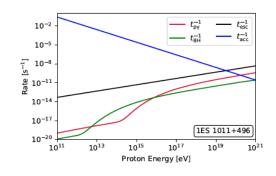
1ES 1011+496, 1ES 0229+200, 1ES 1101-232, 1ES 0414+009

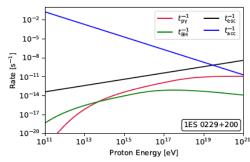
UHECR accel. and escape from jet

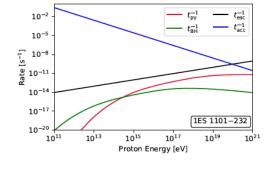
Proton shock-

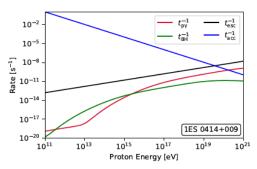
Proton shockacceleration time
$$t_{
m acc}^p \simeq rac{20\eta}{3} rac{r_L}{c} \simeq rac{20\eta}{3} rac{\gamma_p m_p c}{eB}$$

Proton escape time


$$t_{\mathrm{esc}}^p = \frac{R^2}{4D}$$


Diffusion coefficient $D_0(E/E_0)^{2-q}$


$$q = 3/2$$
 Kraichnan turbulence $D_0 \sim 10^{27} - 10^{30}$ cm²/s

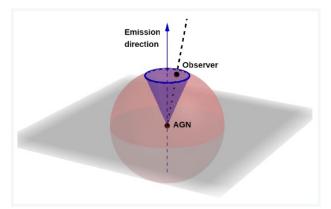

Pion and e+e- pair energy loss time

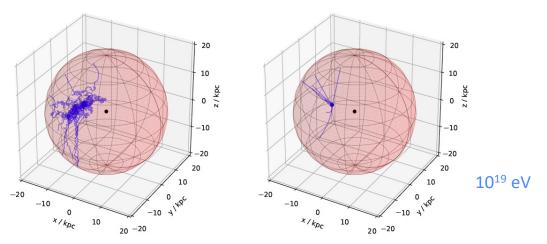
$$\frac{1}{t_{\rm p\gamma}} = \frac{c}{2\gamma_p^2} \int_{\epsilon_{th}/2\gamma_p}^{\infty} d\epsilon_{\gamma}' \frac{n(\epsilon_{\gamma}')}{\epsilon_{\gamma}'^2} \int_{\epsilon_{th}}^{2\epsilon\gamma_p} d\epsilon_r \sigma(\epsilon_r) K(\epsilon_r)$$

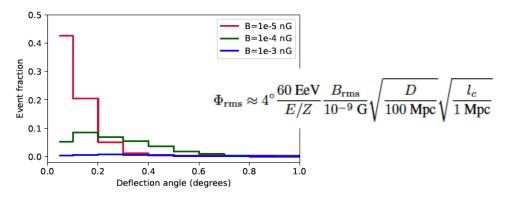
- Escape dominates over energy loss rate for protons
- Acceleration is limited by escape time
- Maximum proton energy escaping as UHECRs ~ 10²⁰ eV

Das, Gupta & Razzague 2020, ApJ

UHECR propagation in intergal. media




- Magnetic fields scramble directionality at low energies
- Deflection becomes smaller at higher energies


10¹⁷ eV

LoS propagation

Das, Gupta & Razzaque 2020, ApJ

Interactions and secondaries

Injection of UHECRs
Injected as a power law

S

Interactions

Pair production
Photopion
Photodisintegration
With EBL models

Magnetic deflections

CRPropa 3

DINT

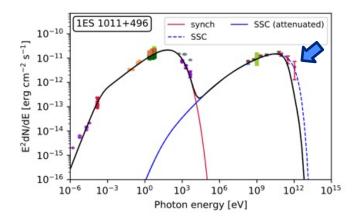
Batista et al. 2016

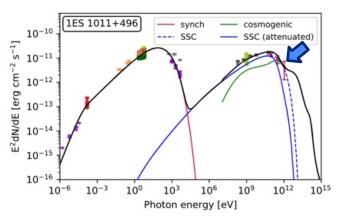
Heiter et al. 2018

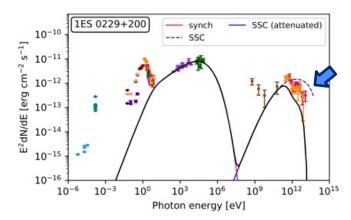
5

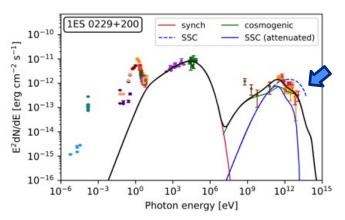
Propagation of secondaries

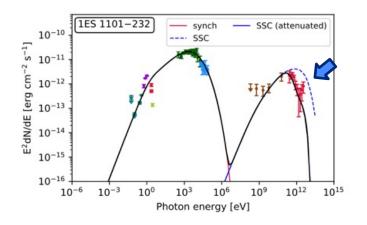
Nucleon, gamma, neutrino

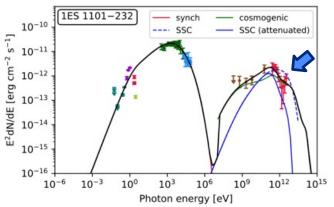


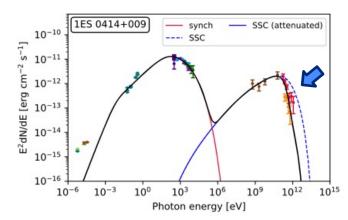

One-zone SSC emission from the jet is calculated with GAMERA - http://libgamera.github.io/GAMERA/docs/main_page.html

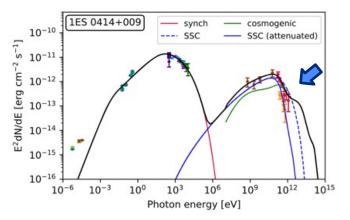

Fits to blazar SEDs with LoS γ rays






Das, Gupta & Razzaque 2020, ApJ


Fits to blazar SEDs with LoS γ rays



Das, Gupta & Razzaque 2020, ApJ

SED model parameters

Table 2
Fit Parameters for the Multiwavelength SED Modeling in Figure 4

HBL	$E_{e,\min}$ (GeV)	$E_{e,\mathrm{cut}}$ (GeV)	α	R (cm)	B (Gauss)	δ_D	$\frac{L_e}{({ m erg \ s}^{-1})}$	$\frac{L_B}{(\text{erg s}^{-1})}$	$L_{\rm UHECR}$ (erg s ⁻¹)	$L_{\rm Edd} ({\rm erg~s}^{-1})$
				F	ure-leptonic n	nodel				
1ES 1011+496	0.08	75.0	2.2	1.5×10^{17}	0.024	20	5.8×10^{38}	1.9×10^{43}	•••	
1ES 0229+200	10.00	1500.0	2.2	1.0×10^{16}	0.015	40	1.3×10^{38}	1.3×10^{41}		
1ES 1101-232	5.70	550.0	2.0	8.4×10^{16}	0.020	22	6.0×10^{37}	5.1×10^{42}		
1ES 0414+009	0.20	200.0	2.0	7.0×10^{16}	0.080	22	7.6×10^{37}	5.7×10^{43}	•••	
				Leptonic -	+ hadronic (U	HECR) n	nodel			
1ES 1011+496	0.04	65.0	2.0	2.2×10^{17}	0.020	20	3.8×10^{38}	2.9×10^{43}	4.8×10^{44}	5.1×10^{46}
1ES 0229+200	10.00	1500.0	2.2	1.0×10^{16}	0.015	40	1.3×10^{38}	1.3×10^{41}	2.6×10^{43}	1.7×10^{47}
1ES 1101-232	5.70	500.0	2.0	1.4×10^{17}	0.020	22	3.5×10^{37}	1.4×10^{43}	3.0×10^{43}	1.0×10^{47}
1ES 0414+009	0.20	200.0	2.0	9.0×10^{16}	0.080	22	5.9×10^{37}	9.4×10^{43}	1.0×10^{44}	2.0×10^{47}

CAPI

Blazars associated with IceCube v

Four source candidates

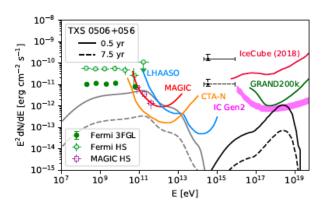
- IC-170922A: TXS 0506+056 (z = 0.3365)
- IC-190730A: PKS 1502+106 (z = 1.84)
- IC-200107A: 3HSP J095507.9+355101 (z = 0.557)
- IC-141209A: GB6 J1040+0617 (z = 0.7351)

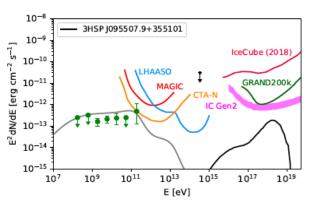
IceCube Collab. 2018

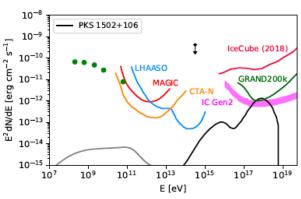
IceCube Collab. 2019

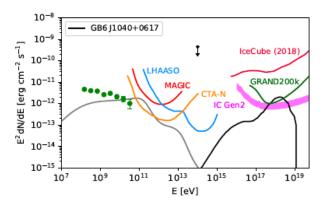
IceCube Collab. 2020

Garappa et al. 2019


- Calculate neutrino luminosity from IceCube event in the relevant energy range
- UHECR proton (> 10¹⁷ eV) luminosity: $L_{UHCR} = \alpha L_{ICv}$
- Inject UHECR protons with spectrum $E^{-2.2}$, $B_{IGMF} = 10^{-16}$ G
- LoS ν and γ fluxes have hard spectra compared to source fluxes
- Detection of LoS ν and/or γ fluxes can confirm IC blazars as UHECR sources


LoS v and γ from IceCube Blazars



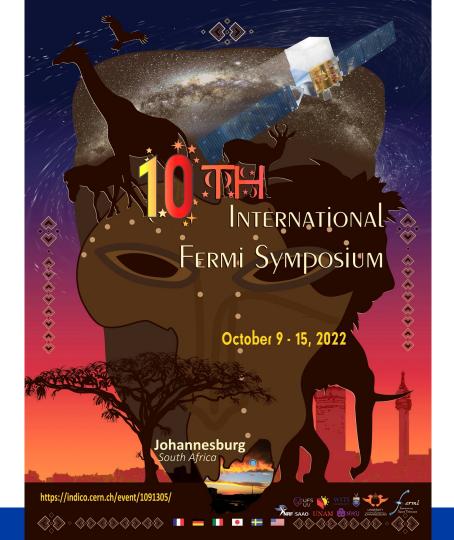


- IceCube (2018) flux upper limit from 9 years of (Aartsen et al. 2018)
- IceCube Gen2 with radio upgrade
 5 yr sensitivity (Aartsen et al. 2019)
- GRAND 200k is sensitivity is for 3yr observation (Alvarez-Muniz et al. 2020)
- LHAASO 1-yr sensitivity (Vernetto 2016)
- MAGIC 50-hr sensitivity (Aleksic et al. 2016)
- CTA-N 50-hr sensitivity (Gueta, ICRC 2021)
- See also future neutrino follow-up by CTA (Sergijenko, ICRC 2021)

Prospects for Detection

- TXS 0506+056 can be detected with LoS neutrinos by IC Gen-2 and with LoS photons by CTA, if $L_{\rm UHCR} \ge 5L_{\rm ICV} \sim 2 \times 10^{46} \, {\rm erg/s}$
- PKS 1502+106 can be detected with LoS neutrinos by IC Gen-2, but $L_{\rm ICv} \sim 10^{49}$ erg/s is already above the Eddington luminosity because of its high redshift
- 3HSP J095507.9+355101 can be detected with LoS neutrinos by IC Gen-2, if $L_{\rm UHCR} \ge 10L_{\rm ICv} \sim 4 \times 10^{47}$ erg/s and with LoS photons by CTA, if $L_{\rm UHCR} \ge 5L_{\rm ICv} \sim 2 \times 10^{47}$ erg/s
- GB6 J1040+0617 can be detected with LoS neutrinos by IC Gen-2 and with LoS photons by CTA, but $L_{\rm ICv} \sim 10^{48}$ erg/s is already above the Eddington luminosity because of its high redshift

Prospects for Detection


- TXS 0506+056 can be detected with LoS neutrinos by IC Gen-2 and with LoS photons by CTA, if $L_{\rm UHCR} \geq 5L_{\rm ICv} \sim 2 \times 10^{46}$ erg/s
- PKS 1502+106 can be detected with LoS neutrinos by IC Gen-2, but L_{ICv} ~ 10⁴⁹ erg/s is already above the Eddington luminosity because of its high redshift
- 3HSP J095507.9+355101 can be detected with LoS neutrinos by IC Gen-2, if $L_{\rm UHCR} \ge 10L_{\rm ICV} \sim 4 \times 10^{47}$ erg/s and with LoS photons by CTA, if $L_{\rm UHCR} \ge 5L_{\rm ICV} \sim 2 \times 10^{47}$ erg/s
- GB6 J1040+0617 can be detected with LoS neutrinos by IC Gen-2 and with LoS photons by CTA, but $L_{\rm ICv} \sim 10^{48}$ erg/s is already above the Eddington luminosity because of its high redshift

- Line-of-sight neutrino and gamma-ray fluxes can probe UHECR acceleration in sources, if the intergalactic magnetic field is relatively low
- Line-of-sight fluxes are expected to appear as hard components compared to source fluxes, within sensitivity reaches of upcoming telescopes
- Fits to SEDs of a few gamma-ray balazars can be improved with LoS gamma ray fluxes together with conventional source SED models
- Detection of LoS neutrino and gamma-ray fluxes from blazars associated with IceCube neutrino detection can establish those as UHECR sources
- Blazars TXS 0506+056 and 3HSP J095507.9+355101 should be prime targets for upcoming telescopes such as IceCube Gen-2 and CTA

Important Deadlines

1 May 2022

Abstract submission opens

1 June 2022

Registration opens

31 July 2022

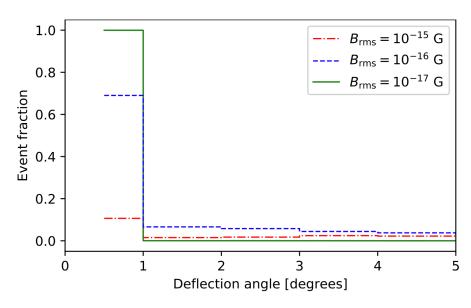
Abstract submission closes

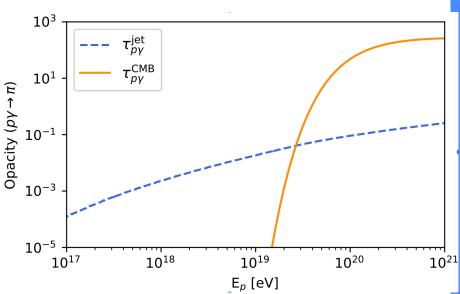
15 August 2022

Notification of talks/posters

2 September 2022

Registration closes


- Line-of-sight neutrino and gamma-ray fluxes can probe UHECR acceleration in sources, if the intergalactic magnetic field is relatively low
- Line-of-sight fluxes are expected to appear as hard components compared to source fluxes, within sensitivity reaches of upcoming telescopes
- Fits to SEDs of a few gamma-ray balazars can be improved with LoS gamma ray fluxes together with conventional source SED models
- Detection of LoS neutrino and gamma-ray fluxes from blazars associated with IceCube neutrino detection can establish those as UHECR sources
- Blazars TXS 0506+056 and 3HSP J095507.9+355101 should be prime targets for upcoming telescopes such as IceCube Gen-2 and CTA


Thank you!

Backup slide – TXS 0506

