

Kuan-Chou Hou, Ido Reiss and Uri Keshet

06/07/2022 7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy

Shocks around galaxy clusters

- * Galaxy clusters are thought to grow by accreting surrounding material \rightarrow strong, collisionless shocks
- * Virial shocks are expected to be at $2 < R/R_{500} < 3 (R_{500} \sim 1 \text{ Mpc})$
- * These virial shocks **define the edges of clusters**
 - Useful information about the formation of large-scale structures, such as local accretion rate
 - A laboratory for studying collisionless shock physics (primordial, low magnetized < nG gas)

The Millennium Simulation

Temperature

 ρ_b : mean baryon density

Detect virial shocks

- * Virial shocks are thought to accelerate charged particles to highly relativistic,
 ≥ 10 TeV energies
 - * $dN_e/dE \propto E^{-p}$ ($p \sim 2$ from strong shocks, e.g. SNR observations)
 - Optical to γ-ray emission from Inverse Compton scattering (Loeb & Waxman 2000; Totani & Kitayama 2000; Keshet et al. 2003)
 - 2. Thermal SZ in microwave (Kocsis et al. 2005)
 - 3. Synchrotron radiation in radio (Waxman & Loeb 2000; Keshet et al. 2004)

Detect virial shocks

- * Virial shocks are thought to accelerate charged particles to highly relativistic,
 ≥ 10 TeV energies
 - * $dN_e/dE \propto E^{-p}$ ($p \sim 2$ from strong shocks, e.g. SNR observations)
 - Optical to γ-ray emission from Inverse Compton scattering (Loeb & Waxman 2000; Totani & Kitayama 2000; Keshet et al. 2003)
 - 2. Thermal SZ in microwave (Kocsis et al. 2005)
 - 3. Synchrotron radiation in radio (Waxman & Loeb 2000; Keshet et al. 2004)

It is a challenge to detect virial shocks (weak signal, strong foreground)

Evidence of virial shock

Stacking Fermi-LAT data

- * Properly scale cluster size with $R_{500} \rightarrow > 5\sigma$ ring signal
- catalog
- **Select clusters**
 - * A2319 \rightarrow strong (8.6 σ) SZ signal of shock
 - * Coma \rightarrow coincident SZ and γ -ray signal

★ Follow-up → up-to-date Fermi data, clean cluster sample, and new 4FGL

- * 7.9 years data
- * 1 100 GeV (4 logarithmic bins)
- * Stack the data of each cluster normalized to its $R_{500} \sim 1$ Mpc
- Masking pixels within 1°.8 of each 3FGL point sources
- * Meta-Catalog of X-ray Clusters (MCXC)
 - * $M_{500} > 10^{13} M_{\odot}$
 - * 0°.2 < θ_{500} < 0°.5
 - * Latitude $|b| > 20^{\circ}$
 - > 1°.8 from 3FGL point sources

Fermi data

White circles have a $5R_{500}$ radius

2D significance map

Radially binned sig. profile

Equal weight per solid angle Equal weight per cluster

Reiss & Keshet (2018)

- * Model the shock signal
 - 5.8 σ based on TS
 - Shock radius $\rho_s = 2.3 \pm 0.1 R_{500}$
 - CRE acceleration rate $\dot{m}\xi_e = (0.6 \pm 0.1)\%$

(mass accretion rate $\dot{m} \simeq \frac{\dot{M}}{M \times H}$)

• Spectral index $p = 2.1 \pm 0.2$

- * Model the shock signal
 - * 5.8 σ based on TS
 - Shock radius $\rho_s = (2.3 \pm 0.1) R_{500}$
 - * CRE acceleration rate $\dot{m}\xi_e = (0.6 \pm 0.1)\%$
 - Spectral index $p = 2.1 \pm 0.2$

- Increase data to 10.6 years (551 weeks)
- ★ Remove clusters contaminated
 by the Loop-I, clusters
 overlapping, and Fermi
 bubble regions
 → 79 clusters remain
- Apply the same analysis and modeling

- * Increase data to 10.6 years (551 weeks)
- Remove clusters contaminated by the Loop-I, clusters overlapping, and Fermi bubble regions \rightarrow 79 clusters remain
- * Apply the same analysis and modeling

Does the virial shock signal remain?

- * Increase data to 13.7 years
- * Include more clusters
 - Same cluster selections but with high-quality point sources from 4FGL-DR3 catalog
 (>1°.8 from SN>15 point sources)
 - 145 clusters
- * Signal goes higher to 4.7σ

Hou+ in prep.

- * Increase data to 13.7 years
- * Include more clusters
 - Same cluster selections but with high-quality point sources from 4FGL-DR3 catalog $(>1^\circ.8 \text{ from SN}>15 \text{ point})$ sources)
 - 145 clusters
- * Signal goes higher to 4.7σ

Hou+ in prep.

Select clusters: A2319

- * Planck SZ
- * The highest SN ratio in the *Planck* SZ catalogs

* Comptonization parameter $y = \frac{\sigma_T}{m_e c^2} P dl$

Radially binned profile of y

Select clusters: Coma

Keshet, Reiss, & Hurier (2017)

* Planck SZ

* Nearby massive cluster at the Galactic pole

Virial radius R₂₀₀~ 2.3 Mpc

ESA / LFI & HFI Consortia

Select clusters: Coma

Simulated VERITAS flux map

- * *Fermi*-LAT (1–100) GeV data (7.9yr)
- * Masking pixels within 1°.8 of each point source
- Morphology taken from VERITAS flux map \rightarrow Elongation $\zeta = 2.5$
- * Model virial shock:

8

- CRE acceleration rate $\dot{m}\xi_e \sim 0.3\%$
- Shock radius $2.0 < R/R_{500} < 2.25$
- Spectral index $p \simeq 2.0$ to 2.2

- Fermi data around 112 clusters
- * Follow-up examinations:
 - Removing possible contaminated clusters \rightarrow the shock signal remains 4.0 σ (6.3 σ based on TS)
 - * Up-to-date Fermi data and 4FGL-DR3 \rightarrow 4.7 σ (6.0 σ based on TS)
- * Select clusters:

* There is a 4.2σ (5.8 σ based on TS) excess at the expected virial shock position after stacking

* A2319 shows a 8.6 σ virial shock SZ signal; the shock radius coincident with the *Fermi* signal * Coma shows a 4.1 σ virial shock SZ signal; coincident the SZ and 3.4 σ Fermi signal

- Fermi data around 112 clusters
- * Follow-up examinations:
 - Removing possible contaminated clusters \rightarrow the shock signal remains 4.0 σ (6.3 σ based on TS)
 - * Up-to-date Fermi data and 4FGL-DR3 \rightarrow 4.7 σ (6.0 σ based on TS)
- * Select clusters:

 - * Coma shows a 4.1 σ virial shock SZ signal; coincident the SZ and 3.4 σ Fermi signal

* There is a 4.2σ (5.8 σ based on TS) excess at the expected virial shock position after stacking

* A2319 shows a 8.6 σ virial shock SZ signal; the shock radius coincident with the *Fermi* signal

VERITAS signal: Coma

Ellipticity $\zeta \equiv a/b$

Keshet et al. 2017

194 193 192 DOD[deg] Internet in the second second

Green: VERITAS -3.4σ to $+3.0\sigma$

Red: -1.3 to $+5.4(v_0/GHz)^{3.2}$ K extracted from WMAP

Inner γ -ray $b = 1^{\circ}$ ring

Yellow: correlation between γ -ray and radio \rightarrow outside the inner ring +3.2 σ correlation