Cta cherenkov telescope array

Probing AGN variability with the **Cherenkov Telescope Array**

 γ —2022 — 7th Heidelberg International Symposium on High-Energy Gamma-ray Astronomy

T. Hovatta, E. Lindfors, M. Cerruti, J. Becerra-Gonzalez, J. Biteau, C. Boisson, M. Böttcher, E. de Gouveia Dal Pino, D. Dorner, G. Grolleron, J.-P. Lenain, M. Manganaro, W. Max-Moerbeck, P. Morris, K. Nilsson, L. Passos Reis, P. Romano, O. Sergijenko, F. Tavecchio, S. Vercellone, S. Wagner, M. Zacharias for the CTA CONSORTIUM

Tuesday 5th of July 2022

FLORIANE CANGEMI

 γ -2022 — FLORIANE CANGEMI

AGNs can be **highly variable**... ...at all timescales

Long-term variability (decades, years, months) Intraday variability (within hours) Microvariability (within a night, minutes)

 γ -2022 — FLORIANE CANGEMI

JD

 γ —2022 — FLORIANE CANGEMI

 γ —2022 — FLORIANE CANGEMI

- Provides unique insights into accelerations processes and radiative mechanisms

CTA will be able to follow the emission from these objects with a very accurate time sampling and over a wide spectral coverage from 20 GeV to 300 TeV!

Provides unique insights into accelerations processes and radiative mechanisms

CTA Observatory

South (Paranal desert, Chile)

North (Canary Islands Spain)

-2022 — FLORIANE CANGEMI

CTA will be an array of more than 50 Cherenkov telescopes located in the northern and southern hemispheres.

CTA Observatory

One telescope already taking data on La Palma

 γ -2022 — FLORIANE CANGEMI

3 different sized telescopes

Medium Sized Telescope 100 GeV to 10 TeV

Small Sized Telescope 1 TeV to 300 TeV

Large Sized Telescope 20 GeV to 200 GeV

CtaAgnVar

In order to infer CTA capabilities to **characterize variability in AGNs** and **disentangle emission processes**, we have developed our simulation tool:

 γ —2022 — FLORIANE CANGEMI

processes, we have developed our simulation tool:

long-term light curves.

- Take into account **CTA observational constraints** and **source visibility** during the year;
- Use **latest instrumental responses** available for both sites;
- Track the source in the sky during the night and take into account the evolution of the elevation angle.

In order to infer CTA capabilities to characterize variability in AGNs and disentangle emission

CtaAgnVar — Python package based on Gammapy that simulates realistic observations of AGN flares and

processes, we have developed our simulation tool:

long-term light curves.

- Take into account **CTA observational constraints** and **source visibility** during the year;
- Use latest instrumental responses available for both sites;
- Track the source in the sky during the night and take into account the evolution of the elevation angle.

In order to infer CTA capabilities to characterize variability in AGNs and disentangle emission

CtaAgnVar — Python package based on Gammapy that simulates realistic observations of AGN flares and

From input model snapshots, CtaAgnVar calculates the interpolated flux and the temporal integrated model which will be used to simulate realistic observations.

 γ -2022 — FLORIANE CANGEMI

Zenith angle 60° Zenith angle 40°

 γ -2022 — FLORIANE CANGEMI

3C 279 – June 2015 flare

CTA North

Zenith angle 60° Zenith angle 40°

 γ —2022 — FLORIANE CANGEMI

3C 279 – June 2015 flare

CTA North

For each timestep:

Fit the simulated observed spectra with phenomenological models)

Compute fluxes to obtain light curves

 γ -2022 — FLORIANE CANGEMI

3C 279 – June 2015 flare

 γ -2022 — FLORIANE CANGEMI

3C 279 – June 2015 flare

Compute fluxes to obtain light curves

CTA North

Hardness Intensity Diagram (HID)

 γ —2022 — FLORIANE CANGEMI

3C 279 – June 2015 flare

 γ —2022 — FLORIANE CANGEMI

BL Lacertae – October 2016 flare

SSC emission powered by magnetic reconnection 10-9

Total duration of the flare ~10h Duration of observations ~ 3.5h ...

 γ —2022 — FLORIANE CANGEMI

If we were able to observe the totality of the flare with optimal observational conditions

 γ —2022 — FLORIANE CANGEMI

Markarian 421 – March 2001 flare

SSC emission from electron in the jet 10-9

Markarian 421 – March 2001 flare

Finke+2008

59610.00

59610.08

59610.16

time [MJD]

SSC emission from electron in the jet 10-9

Input spectro-temporal model:

 $\phi_{z}(E,t) = e^{-\tau_{\gamma\gamma}(E,z)}\phi_{0}(t)\left(\frac{E}{E_{0}}\right)^{-\Gamma(t)-\beta\ln\frac{E}{E_{0}}-\frac{E}{E_{cut}}}$

Input spectro-temporal model:

Input spectro-temporal model:

 γ -2022 — FLORIANE CANGEMI

3	5
3	0

Input spectro-temporal model:

 γ -2022 — FLORIANE CANGEMI

Done for the 14 sources of dedicated CTA Key Science Project

11

Done for the 14 sources of dedicated CTA Key Science Project

Time (MJD)

11

Done for the 14 sources of dedicated CTA Key Science Project

Summary

- We have developed **new tools to simulate AGN flares and long-term light curves**;
- For very short flares (< ~3.5h), CTA will be able to follow the whole flare with a fine time-binning \rightarrow possibility to observe hysteresis in an HID;
- For long flares, CTA will be able to catch part of the flare and eventually reconstruct an hysteresis in the HID; → Offer new possibilities to exploit time-resolved analysis and to probe AGN short and long-term variability!

Summary

- We have developed **new tools to simulate AGN flares and long-term light curves**;
- For very short flares (< ~3.5h), CTA will be able to follow the whole flare with a fine time-binning \rightarrow possibility to observe hysteresis in an HID;
- For long flares, CTA will be able to catch part of the flare and eventually reconstruct an hysteresis in the HID; → Offer new possibilities to exploit time-resolved analysis and to probe AGN short and long-term variability!

Perspectives

- **Flare simulations**: 3 typical flares with 4 theoretical models, more theoretical models will be investigated and compared;
- Long term light curves: reconstruct power spectrum and duty cycle of simulated AGNs with CtaAgnVar

Summary

- We have developed **new tools to simulate AGN flares and long-term light curves**;
- For very short flares (< ~3.5h), CTA will be able to follow the whole flare with a fine time-binning \rightarrow possibility to observe hysteresis in an HID;
- For long flares, CTA will be able to catch part of the flare and eventually reconstruct an hysteresis in the HID; → Offer new possibilities to exploit time-resolved analysis and to probe AGN short and long-term variability!

Perspectives

- Flare simulations: 3 typical flares with 4 theoretical models, more theoretical models will be investigated and compared;
- Long term light curves: reconstruct power spectrum and duty cycle of simulated AGNs with CtaAgnVar

Results of these simulations will be reported in a future CTA consortium paper, stay tuned!

Summary

- We have developed **new tools to simulate AGN flares and long-term light curves**;
- For very short flares (< ~3.5h), CTA will be able to follow the whole flare with a fine time-binning \rightarrow possibility to observe hysteresis in a HID;
- For long flares, CTA will be able to catch part of the flare and eventually reconstruct an hysteresis in the HID; → Offer new possibilities to exploit time-resolved analysis and to probe AGN short and long-term variability!

Perspectives

- Flare simulations: 3 typical flares with 4 theoretical models, more theoretical models will be investigated and compared;
- Long term light curves: reconstruct power spectrum and duty cycle of simulated AGNs with CtaAgnVar

Results of these simulations will be reported in a future CTA consortium paper, stay tuned! **Thank you!**

 γ —2022 — FLORIANE CANGEMI

Additionnal slides

Zenith angle 60° Zenith angle 40° Zenith angle 20°

3C 279 – June 2015 flare

CTA South

 γ -2022 — FLORIANE CANGEMI

Hardness Intensity Diagram (HID)

Hardness Intensity Diagram (HID)

 γ -2022 — FLORIANE CANGEMI

Hardness Intensity Diagram (HID)

Hardness Intensity Diagram (HID)

 γ —2022 — FLORIANE CANGEMI

 $4.0 + 10^{-9}$

3.5

